Given a positive integer N, the task is to find the number of unique permutations of first N natural numbers having sum of the adjacent elements equal to a perfect square.
Examples:
Input: N = 17
Output: 2
Explanation:
Following permutations have sum of adjacent elements equal to a perfect square:
- {17, 8, 1, 15, 10, 6, 3, 13, 12, 4, 5, 11, 14, 2, 7, 9, 16}
- {16, 9, 7, 2, 14, 11, 5, 4, 12, 13, 3, 6, 10, 15, 1, 8, 17}
Therefore, count of such permutations is 2.
Input: N = 13
Output: 0
Approach: The given problem can be solved by using the concepts of Graph. Follow the steps below to solve the problem:
- List all the perfect square numbers up to (2*N – 1) that can be obtained by adding any two positive integers.
- Represent the graph as the adjacency list representation such that if the sum of two numbers X and Y is a perfect square, then add an edge from node X to node Y.
- Count the number of nodes in the graph whose in-degree is 1 and store it in a variable X.
- Now, the number of permutation can be calculated as per the following conditions:
- If the value of X is 0, then a total of N permutations are possible. Hence, print N as the result.
- If the value of X is 1 or 2, then a total of 2 permutations are possible. Hence, print 2 as the result.
- Otherwise, no such permutations exist satisfying the given criteria. Hence, print 0 as the result.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int countPermutations( int N)
{
vector<vector< int > > adj(105);
int indeg = 0;
for ( int i = 1; i <= N; i++) {
for ( int j = 1; j <= N; j++) {
if (i == j)
continue ;
int sum = i + j;
if ( ceil ( sqrt (sum))
== floor ( sqrt (sum))) {
adj[i].push_back(j);
}
}
if (adj[i].size() == 1)
indeg++;
}
if (indeg == 0)
return N;
else if (indeg <= 2)
return 2;
else
return 0;
}
int main()
{
int N = 17;
cout << countPermutations(N);
return 0;
}
|
Java
import java.io.*;
import java.util.*;
import java.lang.*;
class GFG{
static int countPermutations( int N)
{
ArrayList<
ArrayList<Integer>> adj = new ArrayList<
ArrayList<Integer>>( 105 );
for ( int i = 0 ; i < 105 ; i++)
adj.add( new ArrayList<Integer>());
int indeg = 0 ;
for ( int i = 1 ; i <= N; i++)
{
for ( int j = 1 ; j <= N; j++)
{
if (i == j)
continue ;
int sum = i + j;
if (Math.ceil(Math.sqrt(sum)) ==
Math.floor(Math.sqrt(sum)))
{
adj.get(i).add(j);
}
}
if (adj.get(i).size() == 1 )
indeg++;
}
if (indeg == 0 )
return N;
else if (indeg <= 2 )
return 2 ;
else
return 0 ;
}
public static void main(String[] args)
{
int N = 17 ;
System.out.println(countPermutations(N));
}
}
|
Python3
from math import sqrt,floor,ceil
def countPermutations(N):
adj = [[] for i in range ( 105 )]
indeg = 0
for i in range ( 1 , N + 1 ):
for j in range ( 1 , N + 1 ):
if (i = = j):
continue
sum = i + j
if (ceil(sqrt( sum )) = = floor(sqrt( sum ))):
adj[i].append(j)
if ( len (adj[i]) = = 1 ):
indeg + = 1
if (indeg = = 0 ):
return N
elif (indeg < = 2 ):
return 2
else :
return 0
if __name__ = = '__main__' :
N = 17
print (countPermutations(N))
|
C#
using System;
using System.Collections.Generic;
class GFG{
static int countPermutations( int N)
{
List<List< int >> adj = new List<List< int >>(105);
for ( int i = 0; i < 105; i++)
adj.Add( new List< int >());
int indeg = 0;
for ( int i = 1; i <= N; i++)
{
for ( int j = 1; j <= N; j++)
{
if (i == j)
continue ;
int sum = i + j;
if (Math.Ceiling(Math.Sqrt(sum)) ==
Math.Floor(Math.Sqrt(sum)))
{
adj[i].Add(j);
}
}
if (adj[i].Count == 1)
indeg++;
}
if (indeg == 0)
return N;
else if (indeg <= 2)
return 2;
else
return 0;
}
public static void Main()
{
int N = 17;
Console.WriteLine(countPermutations(N));
}
}
|
Javascript
<script>
function countPermutations(N)
{
let adj = [];
for (let i = 0; i < 105; i++)
adj.push([]);
let indeg = 0;
for (let i = 1; i <= N; i++)
{
for (let j = 1; j <= N; j++)
{
if (i == j)
continue ;
let sum = i + j;
if (Math.ceil(Math.sqrt(sum)) ==
Math.floor(Math.sqrt(sum)))
{
adj[i].push(j);
}
}
if (adj[i].length == 1)
indeg++;
}
if (indeg == 0)
return N;
else if (indeg <= 2)
return 2;
else
return 0;
}
let N = 17;
document.write(countPermutations(N));
</script>
|
Time Complexity: O(N2)
Auxiliary Space: O(N2)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
02 Jul, 2021
Like Article
Save Article