Open In App
Related Articles

Count permutations of first N natural numbers having sum of adjacent elements equal to a perfect square

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a positive integer N, the task is to find the number of unique permutations of first N natural numbers having sum of the adjacent elements equal to a perfect square.

Examples:

Input: N = 17
Output: 2
Explanation:
Following permutations have sum of adjacent elements equal to a perfect square:

  1. {17, 8, 1, 15, 10, 6, 3, 13, 12, 4, 5, 11, 14, 2, 7, 9, 16}
  2. {16, 9, 7, 2, 14, 11, 5, 4, 12, 13, 3, 6, 10, 15, 1, 8, 17}

Therefore, count of such permutations is 2.

Input: N = 13
Output: 0

Approach: The given problem can be solved by using the concepts of Graph. Follow the steps below to solve the problem:

  • List all the perfect square numbers up to (2*N – 1) that can be obtained by adding any two positive integers.
  • Represent the graph as the adjacency list representation such that if the sum of two numbers X and Y is a perfect square, then add an edge from node X to node Y.
  • Count the number of nodes in the graph whose in-degree is 1 and store it in a variable X.
  • Now, the number of permutation can be calculated as per the following conditions:
    • If the value of X is 0, then a total of N permutations are possible. Hence, print N as the result.
    • If the value of X is 1 or 2, then a total of 2 permutations are possible. Hence, print 2 as the result.
    • Otherwise, no such permutations exist satisfying the given criteria. Hence, print 0 as the result.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count total number of
// permutation of the first N natural
// number having the sum of adjacent
// elements as perfect square
int countPermutations(int N)
{
    // Create an adjacency matrix
    vector<vector<int> > adj(105);
 
    // Count elements whose indegree
    // is 1
    int indeg = 0;
 
    // Generate adjacency matrix
    for (int i = 1; i <= N; i++) {
        for (int j = 1; j <= N; j++) {
 
            if (i == j)
                continue;
 
            // Find the sum of i and j
            int sum = i + j;
 
            // If sum is perfect square.
            // then move from i to j
            if (ceil(sqrt(sum))
                == floor(sqrt(sum))) {
 
                // Add it in adjacency
                // list of i
                adj[i].push_back(j);
            }
        }
 
        // If any list is of size 1,
        // then the indegree is 1
        if (adj[i].size() == 1)
            indeg++;
    }
 
    // If there is no element whose
    // indegree is 1, then N such
    // permutations are possible
    if (indeg == 0)
        return N;
 
    // If there is 1 or 2 elements
    // whose indegree is 1, then 2
    // permutations are possible
    else if (indeg <= 2)
        return 2;
 
    // If there are more than 2
    // elements whose indegree is
    // 1, then return 0
    else
        return 0;
}
 
// Driver Code
int main()
{
    int N = 17;
    cout << countPermutations(N);
 
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
import java.util.*;
import java.lang.*;
 
class GFG{
   
// Function to count total number of
// permutation of the first N natural
// number having the sum of adjacent
// elements as perfect square
static int countPermutations(int N)
{
     
    // Create an adjacency matrix
    ArrayList<
    ArrayList<Integer>> adj = new ArrayList<
                                  ArrayList<Integer>>(105);
   
      for(int i = 0; i < 105; i++)
        adj.add(new ArrayList<Integer>());
 
    // Count elements whose indegree
    // is 1
    int indeg = 0;
 
    // Generate adjacency matrix
    for(int i = 1; i <= N; i++)
    {
        for(int j = 1; j <= N; j++)
        {
            if (i == j)
                continue;
 
            // Find the sum of i and j
            int sum = i + j;
 
            // If sum is perfect square.
            // then move from i to j
            if (Math.ceil(Math.sqrt(sum)) ==
                Math.floor(Math.sqrt(sum)))
            {
                 
                // Add it in adjacency
                // list of i
                adj.get(i).add(j);
            }
        }
 
        // If any list is of size 1,
        // then the indegree is 1
        if (adj.get(i).size() == 1)
            indeg++;
    }
 
    // If there is no element whose
    // indegree is 1, then N such
    // permutations are possible
    if (indeg == 0)
        return N;
 
    // If there is 1 or 2 elements
    // whose indegree is 1, then 2
    // permutations are possible
    else if (indeg <= 2)
        return 2;
 
    // If there are more than 2
    // elements whose indegree is
    // 1, then return 0
    else
        return 0;
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 17;
     
    System.out.println(countPermutations(N));
}
}
 
// This code is contributed by Dharanendra L V.


Python3




# python program for the above approach
from math import sqrt,floor,ceil
 
# Function to count total number of
# permutation of the first N natural
# number having the sum of adjacent
# elements as perfect square
def countPermutations(N):
    # Create an adjacency matrix
    adj = [[] for i in range(105)]
 
    # bCount elements whose indegree
    # bis 1
    indeg = 0
 
    # bGenerate adjacency matrix
    for i in range(1, N + 1):
        for j in range(1, N + 1):
            if (i == j):
                continue
 
            # Find the sum of i and j
            sum = i + j
 
            # If sum is perfect square.
            # then move from i to j
            if (ceil(sqrt(sum)) == floor(sqrt(sum))):
 
                # Add it in adjacency
                # list of i
                adj[i].append(j)
 
        # If any list is of size 1,
        # then the indegree is 1
        if (len(adj[i]) == 1):
            indeg += 1
 
    # If there is no element whose
    # indegree is 1, then N such
    # permutations are possible
    if (indeg == 0):
        return N
 
    # If there is 1 or 2 elements
    # whose indegree is 1, then 2
    # permutations are possible
    elif (indeg <= 2):
        return 2
 
    # If there are more than 2
    # elements whose indegree is
    # 1, then return 0
    else:
        return 0
 
# Driver Code
if __name__ == '__main__':
    N = 17
    print (countPermutations(N))
 
# This code is contributed by mohit kumar 29.


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
   
// Function to count total number of
// permutation of the first N natural
// number having the sum of adjacent
// elements as perfect square
static int countPermutations(int N)
{
     
    // Create an adjacency matrix
    List<List<int>> adj = new List<List<int>>(105);
   
    for(int i = 0; i < 105; i++)
        adj.Add(new List<int>());
 
    // Count elements whose indegree
    // is 1
    int indeg = 0;
 
    // Generate adjacency matrix
    for(int i = 1; i <= N; i++)
    {
        for(int j = 1; j <= N; j++)
        {
            if (i == j)
                continue;
 
            // Find the sum of i and j
            int sum = i + j;
 
            // If sum is perfect square.
            // then move from i to j
            if (Math.Ceiling(Math.Sqrt(sum)) ==
                Math.Floor(Math.Sqrt(sum)))
            {
                 
                // Add it in adjacency
                // list of i
                adj[i].Add(j);
            }
        }
 
        // If any list is of size 1,
        // then the indegree is 1
        if (adj[i].Count == 1)
            indeg++;
    }
 
    // If there is no element whose
    // indegree is 1, then N such
    // permutations are possible
    if (indeg == 0)
        return N;
 
    // If there is 1 or 2 elements
    // whose indegree is 1, then 2
    // permutations are possible
    else if (indeg <= 2)
        return 2;
 
    // If there are more than 2
    // elements whose indegree is
    // 1, then return 0
    else
        return 0;
}
 
// Driver Code
public static void Main()
{
    int N = 17;
     
    Console.WriteLine(countPermutations(N));
}
}
 
// This code is contributed by SoumikMondal


Javascript




<script>
 
// JavaScript program for the above approach
 
// Function to count total number of
// permutation of the first N natural
// number having the sum of adjacent
// elements as perfect square
function countPermutations(N)
{
    // Create an adjacency matrix
    let adj = [];
    
      for(let i = 0; i < 105; i++)
        adj.push([]);
  
    // Count elements whose indegree
    // is 1
    let indeg = 0;
  
    // Generate adjacency matrix
    for(let i = 1; i <= N; i++)
    {
        for(let j = 1; j <= N; j++)
        {
            if (i == j)
                continue;
  
            // Find the sum of i and j
            let sum = i + j;
  
            // If sum is perfect square.
            // then move from i to j
            if (Math.ceil(Math.sqrt(sum)) ==
                Math.floor(Math.sqrt(sum)))
            {
                  
                // Add it in adjacency
                // list of i
                adj[i].push(j);
            }
        }
  
        // If any list is of size 1,
        // then the indegree is 1
        if (adj[i].length == 1)
            indeg++;
    }
  
    // If there is no element whose
    // indegree is 1, then N such
    // permutations are possible
    if (indeg == 0)
        return N;
  
    // If there is 1 or 2 elements
    // whose indegree is 1, then 2
    // permutations are possible
    else if (indeg <= 2)
        return 2;
  
    // If there are more than 2
    // elements whose indegree is
    // 1, then return 0
    else
        return 0;
}
 
// Driver Code
let N = 17;
 
document.write(countPermutations(N));
 
 
// This code is contributed by patel2127
 
</script>


Output: 

2

 

Time Complexity: O(N2)
Auxiliary Space: O(N2)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 02 Jul, 2021
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials