# Count pairs with set bits sum equal to K

• Last Updated : 08 Apr, 2021

Given an array arr[] and an integer K, the task is to count the pairs whose sum of set bits is K
Examples:

Input: arr[] = {1, 2, 3, 4, 5}, K = 4
Output:
(3, 5) is the only valid pair as the count
of set bits in the integers {1, 2, 3, 4, 5}
are {1, 1, 2, 1, 2} respectively.
Input: arr[] = {5, 42, 35, 22, 7}, K = 6
Output:

Naive approach: Initialise count = 0 and run two nested loops and check all possible pairs and check whether the sum of count bits is K. If yes then increment count.
Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `// Function to return the count``// of set bits in n``unsigned ``int` `countSetBits(``int` `n)``{``    ``unsigned ``int` `count = 0;``    ``while` `(n) {``        ``n &= (n - 1);``        ``count++;``    ``}``    ``return` `count;``}` `// Function to return the count``// of required pairs``int` `pairs(``int` `arr[], ``int` `n, ``int` `k)``{` `    ``// To store the count``    ``int` `count = 0;``    ``for` `(``int` `i = 0; i < n; i++) {``        ``for` `(``int` `j = i + 1; j < n; j++) {` `            ``// Sum of set bits in both the integers``            ``int` `sum = countSetBits(arr[i])``                      ``+ countSetBits(arr[j]);` `            ``// If current pair satisfies``            ``// the given condition``            ``if` `(sum == k)``                ``count++;``        ``}``    ``}``    ``return` `count;``}` `// Driver code``int` `main()``{``    ``int` `arr[] = { 1, 2, 3, 4, 5 };``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr[0]);``    ``int` `k = 4;``    ``cout << pairs(arr, n, k);` `    ``return` `0;``}`

## Java

 `// Java implementation of the approach``class` `GFG``{` `// Function to return the count``// of set bits in n``static` `int` `countSetBits(``int` `n)``{``    ``int` `count = ``0``;``    ``while` `(n > ``0``)``    ``{``        ``n &= (n - ``1``);``        ``count++;``    ``}``    ``return` `count;``}` `// Function to return the count``// of required pairs``static` `int` `pairs(``int` `arr[], ``int` `n, ``int` `k)``{` `    ``// To store the count``    ``int` `count = ``0``;``    ``for` `(``int` `i = ``0``; i < n; i++)``    ``{``        ``for` `(``int` `j = i + ``1``; j < n; j++)``        ``{` `            ``// Sum of set bits in both the integers``            ``int` `sum = countSetBits(arr[i])``                    ``+ countSetBits(arr[j]);` `            ``// If current pair satisfies``            ``// the given condition``            ``if` `(sum == k)``                ``count++;``        ``}``    ``}``    ``return` `count;``}` `// Driver code``public` `static` `void` `main(String args[])``{``    ``int` `arr[] = { ``1``, ``2``, ``3``, ``4``, ``5` `};``    ``int` `n = arr.length;``    ``int` `k = ``4``;``    ``System.out.println(pairs(arr, n, k));``}``}` `// This code has been contributed by 29AjayKumar`

## Python3

 `# Python3 implementation of the approach` `# Function to return the count``# of set bits in n``def` `countSetBits(n) :` `    ``count ``=` `0``;``    ``while` `(n) :``        ` `        ``n &``=` `(n ``-` `1``);``        ``count ``+``=` `1``        ` `    ``return` `count;`  `# Function to return the count``# of required pairs``def` `pairs(arr, n, k) :` `    ``# To store the count``    ``count ``=` `0``;``    ``for` `i ``in` `range``(n) :``        ``for` `j ``in` `range``(i ``+` `1``, n) :` `            ``# Sum of set bits in both the integers``            ``sum` `=` `countSetBits(arr[i]) ``+` `countSetBits(arr[j]);` `            ``# If current pair satisfies``            ``# the given condition``            ``if` `(``sum` `=``=` `k) :``                ``count ``+``=` `1` `;``                ` `    ``return` `count;`  `# Driver code``if` `__name__ ``=``=` `"__main__"` `:` `    ``arr ``=` `[ ``1``, ``2``, ``3``, ``4``, ``5` `];``    ` `    ``n ``=` `len``(arr);``    ``k ``=` `4``;``    ` `    ``print``(pairs(arr, n, k));``    ` `# This code is contributed by AnkitRai01`

## C#

 `// C# implementation of the approach``using` `System;``public` `class` `GFG``{` `// Function to return the count``// of set bits in n``static` `int` `countSetBits(``int` `n)``{``    ``int` `count = 0;``    ``while` `(n > 0)``    ``{``        ``n &= (n - 1);``        ``count++;``    ``}``    ``return` `count;``}` `// Function to return the count``// of required pairs``static` `int` `pairs(``int` `[]arr, ``int` `n, ``int` `k)``{` `    ``// To store the count``    ``int` `count = 0;``    ``for` `(``int` `i = 0; i < n; i++)``    ``{``        ``for` `(``int` `j = i + 1; j < n; j++)``        ``{` `            ``// Sum of set bits in both the integers``            ``int` `sum = countSetBits(arr[i])``                    ``+ countSetBits(arr[j]);` `            ``// If current pair satisfies``            ``// the given condition``            ``if` `(sum == k)``                ``count++;``        ``}``    ``}``    ``return` `count;``}` `// Driver code``public` `static` `void` `Main(String []args)``{``    ``int` `[]arr = { 1, 2, 3, 4, 5 };``    ``int` `n = arr.Length;``    ``int` `k = 4;``    ``Console.WriteLine(pairs(arr, n, k));``}``}` `// This code is contributed by Princi Singh`

## Javascript

 ``
Output:
`1`

Time complexity: O(n2)
Efficient approach: Assume that every integer can be represented using 32 bits, create a frequency array freq[] of size 32 where freq[i] will store the count of numbers having set bits equal to i. Now run two nested loops on this frequency array, if i + j = K then count of pairs will be freq[i] * freq[j] for all such i and j.
Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;``#define MAX 32` `// Function to return the count``// of set bits in n``unsigned ``int` `countSetBits(``int` `n)``{``    ``unsigned ``int` `count = 0;``    ``while` `(n) {``        ``n &= (n - 1);``        ``count++;``    ``}``    ``return` `count;``}` `// Function to return the count``// of required pairs``int` `pairs(``int` `arr[], ``int` `n, ``int` `k)``{` `    ``// To store the count``    ``int` `count = 0;` `    ``// Frequency array``    ``int` `f[MAX + 1] = { 0 };``    ``for` `(``int` `i = 0; i < n; i++)``        ``f[countSetBits(arr[i])]++;` `    ``for` `(``int` `i = 0; i <= MAX; i++) {``        ``for` `(``int` `j = i; j <= MAX; j++) {` `            ``// If current pair satisfies``            ``// the given condition``            ``if` `(i + j == k) {` `                ``// (arr[i], arr[i]) cannot be a valid pair``                ``if` `(i == j)``                    ``count += ((f[i] * (f[i] - 1)) / 2);``                ``else``                    ``count += (f[i] * f[j]);``            ``}``        ``}``    ``}``    ``return` `count;``}` `// Driver code``int` `main()``{``    ``int` `arr[] = { 1, 2, 3, 4, 5 };``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr[0]);``    ``int` `k = 4;``    ``cout << pairs(arr, n, k);` `    ``return` `0;``}`

## Java

 `// Java implementation of the approach``import` `java.util.*;` `class` `GFG``{``    ` `static` `int` `MAX = ``32``;` `// Function to return the count``// of set bits in n``static` `int` `countSetBits(``int` `n)``{``    ``int` `count = ``0``;``    ``while` `(n > ``0``)``    ``{``        ``n &= (n - ``1``);``        ``count++;``    ``}``    ``return` `count;``}` `// Function to return the count``// of required pairs``static` `int` `pairs(``int` `arr[], ``int` `n, ``int` `k)``{` `    ``// To store the count``    ``int` `count = ``0``;` `    ``// Frequency array``    ``int` `[]f = ``new` `int``[MAX + ``1``];``    ``for` `(``int` `i = ``0``; i < n; i++)``        ``f[countSetBits(arr[i])]++;` `    ``for` `(``int` `i = ``0``; i <= MAX; i++)``    ``{``        ``for` `(``int` `j = i; j <= MAX; j++)``        ``{` `            ``// If current pair satisfies``            ``// the given condition``            ``if` `(i + j == k)``            ``{` `                ``// (arr[i], arr[i]) cannot be a valid pair``                ``if` `(i == j)``                    ``count += ((f[i] * (f[i] - ``1``)) / ``2``);``                ``else``                    ``count += (f[i] * f[j]);``            ``}``        ``}``    ``}``    ``return` `count;``}` `// Driver code``public` `static` `void` `main(String[] args)``{``    ``int` `arr[] = { ``1``, ``2``, ``3``, ``4``, ``5` `};``    ``int` `n = arr.length;``    ``int` `k = ``4``;``    ``System.out.println(pairs(arr, n, k));``}``}` `// This code is contributed by Rajput-Ji`

## Python3

 `# Python implementation of the approach``MAX` `=` `32` `# Function to return the count``# of set bits in n``def` `countSetBits(n) :``    ``count ``=` `0``;``    ``while` `(n):``        ``n &``=` `(n ``-` `1``);``        ``count ``+``=` `1``;` `    ``return` `count;` `# Function to return the count``# of required pairs``def` `pairs(arr, n, k):` `    ``# To store the count``    ``count ``=` `0``;` `    ``# Frequency array``    ``f ``=` `[``0` `for` `i ``in` `range``(``MAX` `+` `1``)]` `    ``for` `i ``in` `range``(n):``        ``f[countSetBits(arr[i])] ``+``=` `1``;` `    ``for` `i ``in` `range``(``MAX` `+` `1``):``        ``for` `j ``in` `range``(``1``, ``MAX` `+` `1``):` `            ``# If current pair satisfies``            ``# the given condition``            ``if` `(i ``+` `j ``=``=` `k):` `                ``# (arr[i], arr[i]) cannot be a valid pair``                ``if` `(i ``=``=` `j):``                    ``count ``+``=` `((f[i] ``*` `(f[i] ``-` `1``)) ``/` `2``);``                ``else``:``                    ``count ``+``=` `(f[i] ``*` `f[j]);``    ` `    ``return` `count;` `# Driver code``arr ``=` `[ ``1``, ``2``, ``3``, ``4``, ``5` `]``n ``=` `len``(arr)``k ``=` `4` `print` `(pairs(arr, n, k))` `# This code is contributed by CrazyPro`

## C#

 `// C# implementation of the approach``using` `System;``    ` `class` `GFG``{``    ` `static` `int` `MAX = 32;` `// Function to return the count``// of set bits in n``static` `int` `countSetBits(``int` `n)``{``    ``int` `count = 0;``    ``while` `(n > 0)``    ``{``        ``n &= (n - 1);``        ``count++;``    ``}``    ``return` `count;``}` `// Function to return the count``// of required pairs``static` `int` `pairs(``int` `[]arr, ``int` `n, ``int` `k)``{` `    ``// To store the count``    ``int` `count = 0;` `    ``// Frequency array``    ``int` `[]f = ``new` `int``[MAX + 1];``    ``for` `(``int` `i = 0; i < n; i++)``        ``f[countSetBits(arr[i])]++;` `    ``for` `(``int` `i = 0; i <= MAX; i++)``    ``{``        ``for` `(``int` `j = i; j <= MAX; j++)``        ``{` `            ``// If current pair satisfies``            ``// the given condition``            ``if` `(i + j == k)``            ``{` `                ``// (arr[i], arr[i]) cannot be a valid pair``                ``if` `(i == j)``                    ``count += ((f[i] * (f[i] - 1)) / 2);``                ``else``                    ``count += (f[i] * f[j]);``            ``}``        ``}``    ``}``    ``return` `count;``}` `// Driver code``public` `static` `void` `Main(String[] args)``{``    ``int` `[]arr = { 1, 2, 3, 4, 5 };``    ``int` `n = arr.Length;``    ``int` `k = 4;``    ``Console.WriteLine(pairs(arr, n, k));``}``}``/* This code is contributed by PrinciRaj1992 */`

## Javascript

 ``
Output:
`1`

Time complexity: O(n)

My Personal Notes arrow_drop_up