Related Articles

# Count pairs with Even Product from two given arrays

• Difficulty Level : Basic
• Last Updated : 21 Apr, 2021

Given two arrays, arr[] and brr[] of size N and M respectively, the task is to find the count of pairs (arr[i], brr[j]) such that the product of elements of the pairs is an even number.

Examples:

Input: arr[] = { 1, 2, 3 }, brr[] = { 1, 2 }
Output:
Explanation:
Pairs with even product are: { (arr[0], brr[1]), (arr[1], brr[0]), (arr[1], brr[1]), (arr[2], brr[1]) }.
Therefore, the required output is 4.

Input: arr[] = { 3, 2, 1, 4, 4}, brr[] = { 1, 4, 2, 3, 1 }
Output: 19

Naive Approach: The simplest approach to solve this problem is to traverse both the arrays and generate all possible pairs (arr[i], brr[j]) from both the arrays. For every pair, (arr[i], brr[j]), check if their product is an even number or not. If found to be true, then increment the count. Finally, print the count obtained.

Time Complexity: O(N * M)
Auxiliary Space: O(1)

Efficient Approach: The above approach can be optimized based on the following properties of product of two numbers:

Odd * Odd = Odd
Even * Odd = Even
Even * Even = Even

Follow the steps below to solve the problem:

Below is the implementation of the above approach:

## C++

 `// C++ program to implement``// the above approach` `#include ``using` `namespace` `std;` `// Function to count pairs (arr[i], brr[j])``// whose product is an even number``int` `cntPairsInTwoArray(``int` `arr[], ``int` `brr[],``                       ``int` `N, ``int` `M)``{``    ``// Stores count of odd``    ``// numbers in arr[]``    ``int` `cntOddArr = 0;` `    ``// Stores count of odd``    ``// numbers in brr[]``    ``int` `cntOddBrr = 0;` `    ``// Traverse the array, arr[]``    ``for` `(``int` `i = 0; i < N; i++) {` `        ``// If arr[i] is``        ``// an odd number``        ``if` `(arr[i] & 1) {` `            ``// Update cntOddArr``            ``cntOddArr += 1;``        ``}``    ``}` `    ``// Traverse the array, brr[]``    ``for` `(``int` `i = 0; i < M; i++) {` `        ``// If brr[i] is``        ``// an odd number``        ``if` `(brr[i] & 1) {` `            ``// Update cntOddArr``            ``cntOddBrr += 1;``        ``}``    ``}` `    ``// Return pairs whose product``    ``// is an even number``    ``return` `(N * M) - (cntOddArr * cntOddBrr);``}` `// Driver Code``int` `main()``{``    ``int` `arr[] = { 1, 2, 3 };``    ``int` `N = ``sizeof``(arr) / ``sizeof``(arr[0]);` `    ``int` `brr[] = { 1, 2 };``    ``int` `M = ``sizeof``(brr) / ``sizeof``(brr[0]);` `    ``cout << cntPairsInTwoArray(arr, brr, N, M);` `    ``return` `0;``}`

## Java

 `// Java program to implement``// the above approach``import` `java.util.*;` `class` `GFG{` `// Function to count pairs (arr[i], brr[j])``// whose product is an even number``static` `int` `cntPairsInTwoArray(``int` `arr[], ``int` `brr[],``                       ``int` `N, ``int` `M)``{``  ` `    ``// Stores count of odd``    ``// numbers in arr[]``    ``int` `cntOddArr = ``0``;` `    ``// Stores count of odd``    ``// numbers in brr[]``    ``int` `cntOddBrr = ``0``;` `    ``// Traverse the array, arr[]``    ``for` `(``int` `i = ``0``; i < N; i++) {` `        ``// If arr[i] is``        ``// an odd number``        ``if` `(arr[i] % ``2` `== ``1``) {` `            ``// Update cntOddArr``            ``cntOddArr += ``1``;``        ``}``    ``}` `    ``// Traverse the array, brr[]``    ``for` `(``int` `i = ``0``; i < M; i++) {` `        ``// If brr[i] is``        ``// an odd number``        ``if` `(brr[i] % ``2` `== ``1``) {` `            ``// Update cntOddArr``            ``cntOddBrr += ``1``;``        ``}``    ``}` `    ``// Return pairs whose product``    ``// is an even number``    ``return` `(N * M) - (cntOddArr * cntOddBrr);``}` `// Driver Code``public` `static` `void` `main(String[] args)``{``    ``int` `arr[] = { ``1``, ``2``, ``3` `};``    ``int` `N = arr.length;` `    ``int` `brr[] = { ``1``, ``2` `};``    ``int` `M = brr.length;` `    ``System.out.print(cntPairsInTwoArray(arr, brr, N, M));` `}``}` `// This code is contributed by 29AjayKumar`

## Python3

 `# Python3 program to implement``# the above approach` `# Function to count pairs (arr[i], brr[j])``# whose product is an even number``def` `cntPairsInTwoArray(arr, brr, N, M):``    ` `    ``# Stores count of odd``    ``# numbers in arr[]``    ``cntOddArr ``=` `0` `    ``# Stores count of odd``    ``# numbers in brr[]``    ``cntOddBrr ``=` `0` `    ``# Traverse the array, arr[]``    ``for` `i ``in` `range``(N):` `        ``# If arr[i] is``        ``# an odd number``        ``if` `(arr[i] & ``1``):` `            ``# Update cntOddArr``            ``cntOddArr ``+``=` `1` `    ``# Traverse the array, brr[]``    ``for` `i ``in` `range``(M):` `        ``# If brr[i] is``        ``# an odd number``        ``if` `(brr[i] & ``1``):` `            ``# Update cntOddArr``            ``cntOddBrr ``+``=` `1` `    ``# Return pairs whose product``    ``# is an even number``    ``return` `(N ``*` `M) ``-` `(cntOddArr ``*` `cntOddBrr)` `# Driver Code``if` `__name__ ``=``=` `'__main__'``:``    ` `    ``arr ``=` `[ ``1``, ``2``, ``3` `]``    ``N ``=` `len``(arr)` `    ``brr ``=` `[ ``1``, ``2` `]``    ``M ``=` `len``(brr)` `    ``print``(cntPairsInTwoArray(arr, brr, N, M))` `# This code is contributed by mohit kumar 29`

## C#

 `// C# program to implement``// the above approach ``using` `System;``   ` `class` `GFG{``   ` `// Function to count pairs (arr[i], brr[j])``// whose product is an even number``static` `int` `cntPairsInTwoArray(``int``[] arr, ``int``[] brr,``                              ``int` `N, ``int` `M)``{``    ` `    ``// Stores count of odd``    ``// numbers in arr[]``    ``int` `cntOddArr = 0;`` ` `    ``// Stores count of odd``    ``// numbers in brr[]``    ``int` `cntOddBrr = 0;`` ` `    ``// Traverse the array, arr[]``    ``for``(``int` `i = 0; i < N; i++)``    ``{``        ` `        ``// If arr[i] is``        ``// an odd number``        ``if` `(arr[i] % 2 == 1)``        ``{``            ` `            ``// Update cntOddArr``            ``cntOddArr += 1;``        ``}``    ``}`` ` `    ``// Traverse the array, brr[]``    ``for``(``int` `i = 0; i < M; i++)``    ``{``        ` `        ``// If brr[i] is``        ``// an odd number``        ``if` `(brr[i] % 2 == 1)``        ``{``            ` `            ``// Update cntOddArr``            ``cntOddBrr += 1;``        ``}``    ``}`` ` `    ``// Return pairs whose product``    ``// is an even number``    ``return` `(N * M) - (cntOddArr * cntOddBrr);``}``   ` `// Driver Code``public` `static` `void` `Main()``{``    ``int``[] arr = { 1, 2, 3 };``    ``int` `N = arr.Length;`` ` `    ``int``[] brr = { 1, 2 };``    ``int` `M = brr.Length;`` ` `    ``Console.Write(cntPairsInTwoArray(``        ``arr, brr, N, M));``}``}` `// This code is contributed by code_hunt`

## Javascript

 ``
Output:
`4`

Time Complexity: O(N)
Space Complexity: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up