Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Count pairs with bitwise OR less than Max

  • Difficulty Level : Basic
  • Last Updated : 08 Jun, 2021

Given an array arr[] of N integers, the task is to count the pairs of indices (i, j) such that 0 ≤ i < j ≤ N and arr[i] | arr[j] ≤ max(arr[i], arr[j]) where | is the bitwise OR.
Examples: 
 

Input: arr[] = {1, 2, 3} 
Output:
(1, 3) and (2, 3) are the only valid pairs.
Input: arr[] = {11, 45, 12, 14, 5} 
Output:
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

 

Approach: Run two nested loops and check for every possible pair. If arr[i] | arr[j] <= max(arr[i], arr[j]) then increment the count.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count of valid pairs
int countPairs(int arr[], int n)
{
    int cnt = 0;
 
    // Check all possible pairs
    for (int i = 0; i < n - 1; i++)
        for (int j = i + 1; j < n; j++)
            if ((arr[i] | arr[j]) <= max(arr[i], arr[j]))
                cnt++;
 
    return cnt;
}
 
// Driver code
int main()
{
    int arr[] = { 1, 2, 3 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << countPairs(arr, n);
 
    return 0;
}

Java




// Java implementation of the approach
 
class GFG
{
     
// Function to return the count of valid pairs
static int countPairs(int arr[], int n)
{
    int cnt = 0;
 
    // Check all possible pairs
    for (int i = 0; i < n - 1; i++)
        for (int j = i + 1; j < n; j++)
            if ((arr[i] | arr[j]) <= Math.max(arr[i], arr[j]))
                cnt++;
 
    return cnt;
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 1, 2, 3 };
    int n = arr.length;
    System.out.println(countPairs(arr, n));
}
}
 
// This code is Contributed by Code_Mech.

Python3




# Python 3 implementation of the approach
 
# Function to return the count
# of valid pairs
def countPairs(arr, n):
    cnt = 0
 
    # Check all possible pairs
    for i in range(n - 1):
        for j in range(i + 1, n, 1):
            if ((arr[i] | arr[j]) <= max(arr[i],
                                         arr[j])):
                cnt += 1
 
    return cnt
 
# Driver code
if __name__ == '__main__':
    arr = [1, 2, 3]
    n = len(arr)
    print(countPairs(arr, n))
     
# This code is contributed by
# Surendra_Gangwar

C#




// C# implementation of the approach
using System;
 
class GFG
{
     
// Function to return the count of valid pairs
static int countPairs(int []arr, int n)
{
    int cnt = 0;
 
    // Check all possible pairs
    for (int i = 0; i < n - 1; i++)
        for (int j = i + 1; j < n; j++)
            if ((arr[i] | arr[j]) <= Math.Max(arr[i], arr[j]))
                cnt++;
 
    return cnt;
}
 
// Driver code
static void Main()
{
    int []arr = { 1, 2, 3 };
    int n = arr.Length;
    Console.WriteLine(countPairs(arr, n));
}
}
 
// This code is Contributed by mits.

PHP




<?php
// PHP implementation of the approach
 
// Function to return the count of valid pairs
function countPairs($arr, $n)
{
    $cnt = 0;
 
    // Check all possible pairs
    for ($i = 0; $i < $n - 1; $i++)
        for ($j = $i + 1; $j < $n; $j++)
            if (($arr[$i] |
                 $arr[$j]) <= max($arr[$i],
                                  $arr[$j]))
                $cnt++;
 
    return $cnt;
}
 
// Driver code
$arr = array(1, 2, 3);
$n = sizeof($arr);
echo countPairs($arr, $n);
 
// This code is contributed
// by Akanksha Rai
?>

Javascript




<script>
 
// JavaScript implementation of the approach
 
 
// Function to return the count of valid pairs
function countPairs(arr, n) {
    let cnt = 0;
 
    // Check all possible pairs
    for (let i = 0; i < n - 1; i++)
        for (let j = i + 1; j < n; j++)
            if ((arr[i] | arr[j]) <= Math.max(arr[i], arr[j]))
                cnt++;
 
    return cnt;
}
 
// Driver code
 
let arr = [1, 2, 3];
let n = arr.length;
document.write(countPairs(arr, n));
 
// This code is contributed by _saurabh_jaiswal
 
</script>
Output: 
2

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!