Count pairs with bitwise OR less than Max

Given an array arr[] of N integers, the task is to count the pairs of indices (i, j) such that 0 ≤ i < j ≤ N and arr[i] | arr[j] ≤ max(arr[i], arr[j]) where | is the bitwise OR.

Examples:

Input: arr[] = {1, 2, 3}
Output: 2
(1, 3) and (2, 3) are the only valid pairs.



Input: arr[] = {11, 45, 12, 14, 5}
Output: 3

Approach: Run two nested loops and check for every possible pair. If arr[i] | arr[j] <= max(arr[i], arr[j]) then increment the count.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the count of valid pairs
int countPairs(int arr[], int n)
{
    int cnt = 0;
  
    // Check all possible pairs
    for (int i = 0; i < n - 1; i++)
        for (int j = i + 1; j < n; j++)
            if ((arr[i] | arr[j]) <= max(arr[i], arr[j]))
                cnt++;
  
    return cnt;
}
  
// Driver code
int main()
{
    int arr[] = { 1, 2, 3 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << countPairs(arr, n);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
  
class GFG
{
      
// Function to return the count of valid pairs
static int countPairs(int arr[], int n)
{
    int cnt = 0;
  
    // Check all possible pairs
    for (int i = 0; i < n - 1; i++)
        for (int j = i + 1; j < n; j++)
            if ((arr[i] | arr[j]) <= Math.max(arr[i], arr[j]))
                cnt++;
  
    return cnt;
}
  
// Driver code
public static void main(String[] args)
{
    int arr[] = { 1, 2, 3 };
    int n = arr.length;
    System.out.println(countPairs(arr, n));
}
}
  
// This code is Contributed by Code_Mech.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 implementation of the approach
  
# Function to return the count 
# of valid pairs
def countPairs(arr, n):
    cnt = 0
  
    # Check all possible pairs
    for i in range(n - 1):
        for j in range(i + 1, n, 1):
            if ((arr[i] | arr[j]) <= max(arr[i], 
                                         arr[j])):
                cnt += 1
  
    return cnt
  
# Driver code
if __name__ == '__main__':
    arr = [1, 2, 3]
    n = len(arr)
    print(countPairs(arr, n))
      
# This code is contributed by
# Surendra_Gangwar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
  
class GFG
{
      
// Function to return the count of valid pairs
static int countPairs(int []arr, int n)
{
    int cnt = 0;
  
    // Check all possible pairs
    for (int i = 0; i < n - 1; i++)
        for (int j = i + 1; j < n; j++)
            if ((arr[i] | arr[j]) <= Math.Max(arr[i], arr[j]))
                cnt++;
  
    return cnt;
}
  
// Driver code
static void Main()
{
    int []arr = { 1, 2, 3 };
    int n = arr.Length;
    Console.WriteLine(countPairs(arr, n));
}
}
  
// This code is Contributed by mits.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of the approach
  
// Function to return the count of valid pairs
function countPairs($arr, $n)
{
    $cnt = 0;
  
    // Check all possible pairs
    for ($i = 0; $i < $n - 1; $i++)
        for ($j = $i + 1; $j < $n; $j++)
            if (($arr[$i] | 
                 $arr[$j]) <= max($arr[$i], 
                                  $arr[$j]))
                $cnt++;
  
    return $cnt;
}
  
// Driver code
$arr = array(1, 2, 3);
$n = sizeof($arr);
echo countPairs($arr, $n);
  
// This code is contributed 
// by Akanksha Rai
?>

chevron_right


Output:

2


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.