Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Count pairs whose products exist in array

  • Difficulty Level : Easy
  • Last Updated : 21 May, 2021

Given an array, count those pair whose product value is present in array. 
Examples: 
 

Input : arr[] = {6, 2, 4, 12, 5, 3}
Output : 3
       All pairs whose product exist in array 
       (6 , 2) (2, 3) (4, 3)   

Input :  arr[] = {3, 5, 2, 4, 15, 8}
Output : 2 

 

A Simple solution is to generate all pairs of given array and check if product exists in the array. If exists, then increment count. Finally return count.
Below is implementation of above idea 
 

C++




// C++ program to count pairs whose product exist in array
#include<bits/stdc++.h>
using namespace std;
 
// Returns count of pairs whose product exists in arr[]
int countPairs( int arr[] ,int n)
{
    int result = 0;
    for (int i = 0; i < n ; i++)
    {
        for (int j = i+1 ; j < n ; j++)
        {
            int product = arr[i] * arr[j] ;
 
            // find product in an array
            for (int k = 0; k < n; k++)
            {
                // if product found increment counter
                if (arr[k] == product)
                {
                    result++;
                    break;
                }
            }
        }
    }
 
    // return Count of all pair whose product exist in array
    return result;
}
 
//Driver program
int main()
{
    int arr[] = {6 ,2 ,4 ,12 ,5 ,3} ;
    int n = sizeof(arr)/sizeof(arr[0]);
    cout << countPairs(arr, n);
    return 0;
}

Java




// Java program to count pairs
// whose product exist in array
import java.io.*;
 
class GFG
{
     
// Returns count of pairs
// whose product exists in arr[]
static int countPairs(int arr[],
                      int n)
{
    int result = 0;
    for (int i = 0; i < n ; i++)
    {
        for (int j = i + 1 ; j < n ; j++)
        {
            int product = arr[i] * arr[j] ;
 
            // find product
            // in an array
            for (int k = 0; k < n; k++)
            {
                // if product found
                // increment counter
                if (arr[k] == product)
                {
                    result++;
                    break;
                }
            }
        }
    }
 
    // return Count of all pair
    // whose product exist in array
    return result;
}
 
// Driver Code
public static void main (String[] args)
{
int arr[] = {6, 2, 4, 12, 5, 3} ;
int n = arr.length;
System.out.println(countPairs(arr, n));
}
}
 
// This code is contributed by anuj_67.

Python 3




# Python program to count pairs whose
# product exist in array
 
# Returns count of pairs whose
# product exists in arr[]
def countPairs(arr, n):
 
    result = 0;
    for i in range (0, n):
 
        for j in range(i + 1, n):
             
            product = arr[i] * arr[j] ;
 
            # find product in an array
            for k in range (0, n):
         
                # if product found increment counter
                if (arr[k] == product):
                    result = result + 1;
                    break;
 
    # return Count of all pair whose
    # product exist in array
    return result;
 
# Driver program
arr = [6, 2, 4, 12, 5, 3] ;
n = len(arr);
print(countPairs(arr, n));
     
# This code is contributed
# by Shivi_Aggarwal

C#




// C# program to count pairs
// whose product exist in array
using System;
 
class GFG
{
 
// Returns count of pairs
// whose product exists in arr[]
public static int countPairs(int[] arr,
                             int n)
{
    int result = 0;
    for (int i = 0; i < n ; i++)
    {
        for (int j = i + 1 ; j < n ; j++)
        {
            int product = arr[i] * arr[j];
 
            // find product in an array
            for (int k = 0; k < n; k++)
            {
                // if product found
                // increment counter
                if (arr[k] == product)
                {
                    result++;
                    break;
                }
            }
        }
    }
 
    // return Count of all pair
    // whose product exist in array
    return result;
}
 
// Driver Code
public static void Main(string[] args)
{
    int[] arr = new int[] {6, 2, 4, 12, 5, 3};
    int n = arr.Length;
    Console.WriteLine(countPairs(arr, n));
}
}
 
// This code is contributed by Shrikant13

PHP




<?php
// PHP program to count pairs
// whose product exist in array
 
// Returns count of pairs whose
// product exists in arr[]
function countPairs($arr, $n)
{
    $result = 0;
    for ($i = 0; $i < $n ; $i++)
    {
        for ($j = $i + 1 ; $j < $n ; $j++)
        {
            $product = $arr[$i] * $arr[$j] ;
 
            // find product in an array
            for ($k = 0; $k < $n; $k++)
            {
                // if product found increment counter
                if ($arr[$k] == $product)
                {
                    $result++;
                    break;
                }
            }
        }
    }
 
    // return Count of all pair whose
    // product exist in array
    return $result;
}
 
// Driver Code
$arr = array(6, 2, 4, 12, 5, 3);
$n = sizeof($arr);
echo countPairs($arr, $n);
 
// This code is contributed
// by Akanksha Rai

Javascript




<script>
// javascript program to count pairs
// whose product exist in array
 
    // Returns count of pairs
    // whose product exists in arr
    function countPairs(arr, n)
    {
        var result = 0;
        for (i = 0; i < n; i++)
        {
            for (j = i + 1; j < n; j++)
            {
                var product = arr[i] * arr[j];
 
                // find product
                // in an array
                for (k = 0; k < n; k++)
                {
                 
                    // if product found
                    // increment counter
                    if (arr[k] == product)
                    {
                        result++;
                        break;
                    }
                }
            }
        }
 
        // return Count of all pair
        // whose product exist in array
        return result;
    }
 
    // Driver Code
        var arr = [ 6, 2, 4, 12, 5, 3 ];
        var n = arr.length;
        document.write(countPairs(arr, n));
 
// This code is contributed by Rajput-Ji
</script>

Output: 
 

3

Time complexity: O(n3)
An Efficient solution is to use ‘hash’ that stores all array element. Generate all possible pair of given array ‘arr’ and check product of each pair is in ‘hash’. If exists, then increment count. Finarlly return count. 
Below is implementation of above idea 
 

C++




// A hashing based C++ program to count pairs whose product
// exists in arr[]
#include<bits/stdc++.h>
using namespace std;
 
// Returns count of pairs whose product exists in arr[]
int countPairs(int arr[] , int n)
{
    int result = 0;
 
    // Create an empty hash-set that store all array element
    set< int > Hash;
 
    // Insert all array element into set
    for (int i = 0 ; i < n; i++)
        Hash.insert(arr[i]);
 
    // Generate all pairs and check is exist in 'Hash' or not
    for (int i = 0 ; i < n; i++)
    {
        for (int j = i + 1; j<n ; j++)
        {
            int product = arr[i]*arr[j];
 
            // if product exists in set then we increment
            // count by 1
            if (Hash.find(product) != Hash.end())
                result++;
        }
    }
 
    // return count of pairs whose product exist in array
    return result;
}
 
// Driver program
int main()
{
    int arr[] = {6 ,2 ,4 ,12 ,5 ,3};
    int n = sizeof(arr)/sizeof(arr[0]);
    cout << countPairs(arr, n) ;
    return 0;
}

Java




// A hashing based Java program to count pairs whose product
// exists in arr[]
import java.util.*;
 
class GFG
{
 
    // Returns count of pairs whose product exists in arr[]
    static int countPairs(int arr[], int n) {
        int result = 0;
 
        // Create an empty hash-set that store all array element
        HashSet< Integer> Hash = new HashSet<>();
 
        // Insert all array element into set
        for (int i = 0; i < n; i++)
        {
            Hash.add(arr[i]);
        }
 
        // Generate all pairs and check is exist in 'Hash' or not
        for (int i = 0; i < n; i++)
        {
            for (int j = i + 1; j < n; j++)
            {
                int product = arr[i] * arr[j];
 
                // if product exists in set then we increment
                // count by 1
                if (Hash.contains(product))
                {
                    result++;
                }
            }
        }
 
        // return count of pairs whose product exist in array
        return result;
    }
 
    // Driver program
    public static void main(String[] args)
    {
        int arr[] = {6, 2, 4, 12, 5, 3};
        int n = arr.length;
        System.out.println(countPairs(arr, n));
    }
}
 
// This code has been contributed by 29AjayKumar

Python3




# A hashing based C++ program to count
# pairs whose product exists in arr[]
 
# Returns count of pairs whose product
# exists in arr[]
def countPairs(arr, n):
    result = 0
 
    # Create an empty hash-set that
    # store all array element
    Hash = set()
 
    # Insert all array element into set
    for i in range(n):
        Hash.add(arr[i])
 
    # Generate all pairs and check is
    # exist in 'Hash' or not
    for i in range(n):
        for j in range(i + 1, n):
            product = arr[i] * arr[j]
 
            # if product exists in set then
            # we increment count by 1
            if product in(Hash):
                result += 1
     
    # return count of pairs whose
    # product exist in array
    return result
 
# Driver Code
if __name__ == '__main__':
    arr = [6, 2, 4, 12, 5, 3]
    n = len(arr)
    print(countPairs(arr, n))
     
# This code is contributed by
# Sanjit_Prasad

C#




// A hashing based C# program to count pairs whose product
// exists in arr[]
using System;
using System.Collections.Generic;
 
class GFG
{
 
    // Returns count of pairs whose product exists in arr[]
    static int countPairs(int []arr, int n)
    {
        int result = 0;
 
        // Create an empty hash-set that store all array element
        HashSet<int> Hash = new HashSet<int>();
 
        // Insert all array element into set
        for (int i = 0; i < n; i++)
        {
            Hash.Add(arr[i]);
        }
 
        // Generate all pairs and check is exist in 'Hash' or not
        for (int i = 0; i < n; i++)
        {
            for (int j = i + 1; j < n; j++)
            {
                int product = arr[i] * arr[j];
 
                // if product exists in set then we increment
                // count by 1
                if (Hash.Contains(product))
                {
                    result++;
                }
            }
        }
 
        // return count of pairs whose product exist in array
        return result;
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        int []arr = {6, 2, 4, 12, 5, 3};
        int n = arr.Length;
        Console.WriteLine(countPairs(arr, n));
    }
}
 
/* This code contributed by PrinciRaj1992 */

Javascript




<script>
// A hashing based javascript program to count pairs whose product
// exists in arr
 
    // Returns count of pairs whose product exists in arr
    function countPairs(arr , n) {
        var result = 0;
 
        // Create an empty hash-set that store all array element
        var Hash = new Set();
 
        // Insert all array element into set
        for (i = 0; i < n; i++) {
            Hash.add(arr[i]);
        }
 
        // Generate all pairs and check is exist in 'Hash' or not
        for (i = 0; i < n; i++) {
            for (j = i + 1; j < n; j++) {
                var product = arr[i] * arr[j];
 
                // if product exists in set then we increment
                // count by 1
                if (Hash.has(product)) {
                    result++;
                }
            }
        }
 
        // return count of pairs whose product exist in array
        return result;
    }
 
    // Driver program
     
        var arr = [ 6, 2, 4, 12, 5, 3 ];
        var n = arr.length;
        document.write(countPairs(arr, n));
 
// This code contributed by Rajput-Ji
</script>

Output: 
 

3

Time complexity : O(n2) ‘Under the assumption insert, find operation take O(1) Time ‘
This article is contributed by Nishant_Singh (Pintu). If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!