Skip to content
Related Articles

Related Articles

Count pairs whose Bitwise AND exceeds Bitwise XOR from a given array
  • Last Updated : 19 Apr, 2021

Given an array arr[] of size N, the task is to count the number of pairs from the given array such that the Bitwise AND (&) of each pair is greater than its Bitwise XOR(^).

Examples :

Input: arr[] = {1, 2, 3, 4} 
Output:1
Explanation:
Pairs that satisfy the given conditions are: 
(2 & 3) > (2 ^ 3)
Therefore, the required output is 1. 

Input: arr[] = {1, 4, 3, 7}
Output: 1
Explanation:
Pairs that satisfy the given conditions are: 
 (4 & 7) > (4 ^ 3)
Therefore, the required output is 1. 

Naive Approach: The simplest approach to solve the problem is to traverse the array and generate all possible pairs from the given array. For each pair, check if its Bitwise AND( & ) is greater than its Bitwise XOR( ^ ) or not. If found to be true, then increment the count of pairs by 1. Finally, print the count of such pairs obtained. 

Time Complexity: O(N2)
Auxiliary Space: O(1)

Efficient approach: To optimize the above approach, follow the properties of the Bitwise Operators:

1 ^ 0 = 1
0 ^ 1 = 1
1 & 1 = 1
X = b31b30…..b1b0
Y = a31b30….a1a0
If the expression {(X & Y) > (X ^ Y)} is true, then the Most Significant Bit (MSB) of both X and Y must be equal. 
Total count of pairs that satisfying the condition {(X & Y) > (X ^ Y)} is equal to:
\Sigma_{n=0}^{31}(^{bit[i]}_{\ \ \ 2})



Follow the steps below to solve the problem: 

  1. Initialize a variable, say res, to store the count of pairs that satisfy the given condition.
  2. Traverse the given array arr[].
  3. Store the positions of the Most Significant Bit (MSB) of each element of the given array.
  4. Initialize an array bits[], of size 32 (max no of bits)
  5. Iterate over each array element and perform the following steps:
    1. Find the Most Significant Bit (MSB) of the current array element, say j.
    2. Add the value stored in bits[j] to the answer.
    3. Increase the value of bits[j] by 1.

Below is the implementation of the above approach

C++




// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count pairs that
// satisfy the above condition
int cntPairs(int arr[], int N)
{
 
    // Stores the count of pairs
    int res = 0;
 
    // Stores the count of array
    // elements having same
    // positions of MSB
    int bit[32] = { 0 };
 
    // Traverse the array
    for (int i = 0; i < N; i++) {
        // Stores the index of
        // MSB of array elements
        int pos = log2(arr[i]);
        bit[pos]++;
    }
 
    // Calculate number of pairs
    for (int i = 0; i < 32; i++) {
        res += (bit[i] * (bit[i] - 1)) / 2;
    }
 
    return res;
}
 
// Driver Code
int main()
{
    // Given Input
    int arr[] = { 1, 2, 3, 4 };
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function call to count pairs
    // satisfying the given condition
    cout << cntPairs(arr, N);
}

Java




// Java program to implement
// the above approach
import java.io.*;
 
class GFG{
 
// Function to count pairs that
// satisfy the above condition
static int cntPairs(int arr[], int N)
{
 
    // Stores the count of pairs
    int res = 0;
 
    // Stores the count of array
    // elements having same
    // positions of MSB
    int bit[] = new int[32];
 
    // Traverse the array
    for(int i = 0; i < N; i++)
    {
         
        // Stores the index of
        // MSB of array elements
        int pos = (int)(Math.log(arr[i]) / Math.log(2));
        bit[pos]++;
    }
 
    // Calculate number of pairs
    for(int i = 0; i < 32; i++)
    {
        res += (bit[i] * (bit[i] - 1)) / 2;
    }
    return res;
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given Input
    int arr[] = { 1, 2, 3, 4 };
    int N = arr.length;
 
    // Function call to count pairs
    // satisfying the given condition
    System.out.println(cntPairs(arr, N));
}
}
 
// This code is contributed by Dharanendra L V.

Python3




# Python3 program to implement
# the above approach
import math
 
# Function to count pairs that
# satisfy the above condition
def cntPairs(arr, N):
 
    # Stores the count of pairs
    res = 0
 
    # Stores the count of array
    # elements having same
    # positions of MSB
    bit = [0] * 32
 
    # Traverse the array
    for i in range(N):
         
        # Stores the index of
        # MSB of array elements
        pos = (int)(math.log2(arr[i]))
        bit[pos] += 1
 
    # Calculate number of pairs
    for i in range(32):
        res += (bit[i] * (bit[i] - 1)) // 2
         
    return res
 
# Driver Code
if __name__ == "__main__":
 
    # Given Input
    arr = [1, 2, 3, 4]
    N = len(arr)
 
    # Function call to count pairs
    # satisfying the given condition
    print(cntPairs(arr, N))
 
# This code is contributed by ukasp

C#




// C# program to implement
// the above approach
using System;
 
class GFG{
     
// Function to count pairs that
// satisfy the above condition
static int cntPairs(int[] arr, int N)
{
 
    // Stores the count of pairs
    int res = 0;
 
    // Stores the count of array
    // elements having same
    // positions of MSB
    int[] bit = new int[32];
 
    // Traverse the array
    for(int i = 0; i < N; i++)
    {
         
        // Stores the index of
        // MSB of array elements
        int pos = (int)(Math.Log(arr[i]) / Math.Log(2));
        bit[pos]++;
    }
 
    // Calculate number of pairs
    for(int i = 0; i < 32; i++)
    {
        res += (bit[i] * (bit[i] - 1)) / 2;
    }
    return res;
}
 
// Driver Code
static public void Main ()
{
     
    // Given Input
    int[] arr = { 1, 2, 3, 4 };
    int N = arr.Length;
 
    // Function call to count pairs
    // satisfying the given condition
    Console.Write(cntPairs(arr, N));
}
}
 
// This code is contributed by avijitmondal1998

Javascript




<script>
 
// Javascript program to implement
// the above approach
 
// Function to count pairs that
// satisfy the above condition
function cntPairs(arr, N)
{
 
    // Stores the count of pairs
    var res = 0;
 
    // Stores the count of array
    // elements having same
    // positions of MSB
    var bit  = Array(32).fill(0);
    var i;
    // Traverse the array
    for( i = 0; i < N; i++) {
        // Stores the index of
        // MSB of array elements
        var pos = Math.ceil(Math.log2(arr[i]));
        bit[pos] += 1;
    }
 
    // Calculate number of pairs
    for (i = 0; i < 32; i++) {
        res += Math.ceil((bit[i] * (bit[i] - 1)) / 2);
    }
 
    return res;
}
 
// Driver Code
    // Given Input
    arr = [1, 2, 3, 4];
    N = arr.length;
 
    // Function call to count pairs
    // satisfying the given condition
    document.write(cntPairs(arr, N));
 
</script>
Output: 
1

 

Time Complexity: O(N)
Auxiliary Space: O(1)

 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :