Count pairs of numbers from 1 to N with Product divisible by their Sum

Given a number N. The task is to count pairs (x, y) such that x*y is divisible by (x+y) and the condition 1 <= x < y < N holds true.

Examples:

Input : N = 6
Output : 1
Explanation: The only pair is (3, 6) which satisfies
all of the given condition, 3<6 and 18%9=0.

Input : N = 15
Output : 4

The basic approach is to iterate using two loops carefully maintaining the given condition 1 <= x < y < N and generate all possible valid pairs and count such pairs for which the product of their values is divisible by sum.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to count pairs of numbers
// from 1 to N with Product divisible
// by their Sum
  
#include <bits/stdc++.h>
using namespace std;
  
// Function to count pairs
int countPairs(int n)
{
    // variable to store count
    int count = 0;
  
    // Generate all possible pairs such that
    // 1 <= x < y < n
    for (int x = 1; x < n; x++) {
        for (int y = x + 1; y <= n; y++) {
            if ((y * x) % (y + x) == 0)
                count++;
        }
    }
  
    return count;
}
  
// Driver code
int main()
{
    int n = 15;
  
    cout << countPairs(n);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to count pairs of numbers
// from 1 to N with Product divisible
// by their Sum
  
import java.io.*;
  
class GFG {
   
  
  
// Function to count pairs
static int countPairs(int n)
{
    // variable to store count
    int count = 0;
  
    // Generate all possible pairs such that
    // 1 <= x < y < n
    for (int x = 1; x < n; x++) {
        for (int y = x + 1; y <= n; y++) {
            if ((y * x) % (y + x) == 0)
                count++;
        }
    }
  
    return count;
}
  
// Driver code
  
    public static void main (String[] args) {
            int n = 15;
  
    System.out.println(countPairs(n));
    }
}
// This code is contributed by anuj_67..

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to count pairs of numbers
# from 1 to N with Product divisible
# by their Sum
  
# Function to count pairs
def countPairs(n):
      
    # variable to store count
    count = 0
      
    # Generate all possible pairs such that
    # 1 <= x < y < n
    for x in range(1, n):
        for y in range(x + 1, n + 1):
            if ((y * x) % (y + x) == 0):
                count += 1
  
    return count
  
# Driver code
n = 15
print(countPairs(n))
  
# This code is contributed 
# by PrinciRaj1992

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to count pairs of numbers
// from 1 to N with Product divisible
// by their Sum
using System;
  
class GFG 
{
  
// Function to count pairs
static int countPairs(int n)
{
    // variable to store count
    int count = 0;
  
    // Generate all possible pairs 
    // such that 1 <= x < y < n
    for (int x = 1; x < n; x++) 
    {
        for (int y = x + 1; y <= n; y++)
        {
            if ((y * x) % (y + x) == 0)
                count++;
        }
    }
  
    return count;
}
  
// Driver code
public static void Main ()
{
    int n = 15;
  
    Console.WriteLine(countPairs(n));
}
}
  
// This code is contributed by anuj_67

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to count pairs of 
// numbers from 1 to N with Product 
// divisible by their Sum
  
// Function to count pairs
function countPairs($n)
{
    // variable to store count
    $count = 0;
  
    // Generate all possible pairs 
    // such that 1 <= x < y < n
    for ($x = 1; $x < $n; $x++)
    {
        for ($y = $x + 1; $y <= $n; $y++) 
        {
            if (($y * $x) % ($y + $x) == 0)
                $count++;
        }
    }
  
    return $count;
}
  
// Driver code
$n = 15;
echo countPairs($n);
  
// This code is contributed by ajit
?>

chevron_right


Output:

4

Time Complexity : O(N2)



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : vt_m, jit_t, princiraj1992