Count pairs in BST with sum greater than K
Given a binary search tree containing N distinct nodes and a value K. The task is to count pairs in the given binary search tree whose sum is greater than the given value K.
Examples:
Input: 5 / \ 3 7 / \ / \ 2 4 6 8 k = 11 Output: 6 Explanation: There are 6 pairs which are (4, 8), (5, 7), (5, 8), (6, 7), (6, 8) and (7, 8). Input: 8 / \ 3 9 \ / \ 5 6 18 k = 23 Output: 3 Explanation: There are 3 pairs which are (6, 18), (8, 18) and (9, 18).
Naive Approach:
To solve the problem mentioned above we have to store inorder traversal of BST in an array then run two loops to generate all pairs and one by one check if the current pair’s sum is greater than k or not.
Efficient Approach:
The above method can be optimized if we store the inorder traversal of BST in an array and take the initial and last index of the array in l and r variable to find the total pair in the inorder array. Initially assign l as 0 and r as n-1. Consider a variable and initialize it to zero. This variable result will be our final answer. Now iterate until l < r and if the current left and current right have a sum greater than K, all elements from l+1 to r form a pair with it otherwise it doesn’t, therefore, increment current left. Finally, return the result.
Below is the implementation of the above approach:
C++
// C++ program to Count // pair in BST whose Sum // is greater than K #include <bits/stdc++.h> using namespace std; // Structure of each node of BST struct node { int key; struct node *left, *right; }; // Function to create a new BST node node* newNode( int item) { node* temp = new node(); temp->key = item; temp->left = temp->right = NULL; return temp; } /* Function to insert a new node with given key in BST */ struct node* insert( struct node* node, int key) { // check if the tree is empty if (node == NULL) return newNode(key); if (key < node->key) node->left = insert(node->left, key); else if (key > node->key) node->right = insert(node->right, key); /* return the (unchanged) node pointer */ return node; } // Function to return the size of the tree int sizeOfTree(node* root) { if (root == NULL) { return 0; } // Calculate left size recursively int left = sizeOfTree(root->left); // Calculate right size recursively int right = sizeOfTree(root->right); // Return total size recursively return (left + right + 1); } // Function to store inorder traversal of BST void storeInorder(node* root, int inOrder[], int & index) { // Base condition if (root == NULL) { return ; } // Left recursive call storeInorder(root->left, inOrder, index); // Store elements in inorder array inOrder[index++] = root->key; // Right recursive call storeInorder(root->right, inOrder, index); } // function to count the pair of BST // whose sum is greater than k int countPairUtil( int inOrder[], int j, int k) { int i = 0; int pair = 0; while (i < j) { // check if sum of value at index // i and j is greater than k if (inOrder[i] + inOrder[j] > k) { pair += j - i; j--; } else { i++; } } // Return number of total pair return pair; } // Function to count the // pair of BST whose sum is // greater than k int countPair(node* root, int k) { // Store the size of BST int numNode = sizeOfTree(root); // Auxiliary array for storing // the inorder traversal of BST int inOrder[numNode + 1]; int index = 0; storeInorder(root, inOrder, index); // Function call to count the pair return countPairUtil(inOrder, index - 1, k); } // Driver code int main() { // create tree struct node* root = NULL; root = insert(root, 5); insert(root, 3); insert(root, 2); insert(root, 4); insert(root, 7); insert(root, 6); insert(root, 8); int k = 11; // Print the number of pair cout << countPair(root, k); return 0; } |
Java
// Java program to Count // pair in BST whose Sum // is greater than K class GFG{ // Structure of each node of BST static class node { int key; node left, right; }; static int index; // Function to create a new BST node static node newNode( int item) { node temp = new node(); temp.key = item; temp.left = temp.right = null ; return temp; } /* Function to insert a new node with given key in BST */ static node insert(node node, int key) { // check if the tree is empty if (node == null ) return newNode(key); if (key < node.key) node.left = insert(node.left, key); else if (key > node.key) node.right = insert(node.right, key); /* return the (unchanged) node pointer */ return node; } // Function to return the size of the tree static int sizeOfTree(node root) { if (root == null ) { return 0 ; } // Calculate left size recursively int left = sizeOfTree(root.left); // Calculate right size recursively int right = sizeOfTree(root.right); // Return total size recursively return (left + right + 1 ); } // Function to store inorder traversal of BST static void storeInorder(node root, int inOrder[]) { // Base condition if (root == null ) { return ; } // Left recursive call storeInorder(root.left, inOrder); // Store elements in inorder array inOrder[index++] = root.key; // Right recursive call storeInorder(root.right, inOrder); } // function to count the pair of BST // whose sum is greater than k static int countPairUtil( int inOrder[], int j, int k) { int i = 0 ; int pair = 0 ; while (i < j) { // check if sum of value at index // i and j is greater than k if (inOrder[i] + inOrder[j] > k) { pair += j - i; j--; } else { i++; } } // Return number of total pair return pair; } // Function to count the // pair of BST whose sum is // greater than k static int countPair(node root, int k) { // Store the size of BST int numNode = sizeOfTree(root); // Auxiliary array for storing // the inorder traversal of BST int []inOrder = new int [numNode + 1 ]; index = 0 ; storeInorder(root, inOrder); // Function call to count the pair return countPairUtil(inOrder, index - 1 , k); } // Driver code public static void main(String[] args) { // create tree node root = null ; root = insert(root, 5 ); insert(root, 3 ); insert(root, 2 ); insert(root, 4 ); insert(root, 7 ); insert(root, 6 ); insert(root, 8 ); int k = 11 ; // Print the number of pair System.out.print(countPair(root, k)); } } // This code is contributed by Princi Singh |
Python3
# Python3 program to count pair in # BST whose sum is greater than K index = 0 # Structure of each node of BST class newNode: # Function to create a new BST node def __init__( self , item): self .key = item self .left = None self .right = None # Function to insert a new # node with given key in BST def insert(node, key): # Check if the tree is empty if (node = = None ): return newNode(key) if (key < node.key): node.left = insert(node.left, key) elif (key > node.key): node.right = insert(node.right, key) # Return the (unchanged) node pointer return node # Function to return the size of the tree def sizeOfTree(root): if (root = = None ): return 0 # Calculate left size recursively left = sizeOfTree(root.left) # Calculate right size recursively right = sizeOfTree(root.right) # Return total size recursively return (left + right + 1 ) # Function to store inorder traversal of BST def storeInorder(root, inOrder): global index # Base condition if (root = = None ): return # Left recursive call storeInorder(root.left, inOrder) # Store elements in inorder array inOrder[index] = root.key index + = 1 # Right recursive call storeInorder(root.right, inOrder) # Function to count the pair of BST # whose sum is greater than k def countPairUtil(inOrder, j, k): i = 0 pair = 0 while (i < j): # Check if sum of value at index # i and j is greater than k if (inOrder[i] + inOrder[j] > k): pair + = j - i j - = 1 else : i + = 1 # Return number of total pair return pair # Function to count the # pair of BST whose sum is # greater than k def countPair(root, k): global index # Store the size of BST numNode = sizeOfTree(root) # Auxiliary array for storing # the inorder traversal of BST inOrder = [ 0 for i in range (numNode + 1 )] storeInorder(root, inOrder) # Function call to count the pair return countPairUtil(inOrder, index - 1 , k) # Driver code if __name__ = = '__main__' : # Create tree root = None root = insert(root, 5 ) insert(root, 3 ) insert(root, 2 ) insert(root, 4 ) insert(root, 7 ) insert(root, 6 ) insert(root, 8 ) k = 11 # Print the number of pair print (countPair(root, k)) # This code is contributed by ipg2016107 |
C#
// C# program to Count // pair in BST whose Sum // is greater than K using System; class GFG{ // Structure of each node of BST class node { public int key; public node left, right; }; static int index; // Function to create a new BST node static node newNode( int item) { node temp = new node(); temp.key = item; temp.left = temp.right = null ; return temp; } /* Function to insert a new node with given key in BST */ static node insert(node node, int key) { // check if the tree is empty if (node == null ) return newNode(key); if (key < node.key) node.left = insert(node.left, key); else if (key > node.key) node.right = insert(node.right, key); /* return the (unchanged) node pointer */ return node; } // Function to return the size of the tree static int sizeOfTree(node root) { if (root == null ) { return 0; } // Calculate left size recursively int left = sizeOfTree(root.left); // Calculate right size recursively int right = sizeOfTree(root.right); // Return total size recursively return (left + right + 1); } // Function to store inorder traversal of BST static void storeInorder(node root, int []inOrder) { // Base condition if (root == null ) { return ; } // Left recursive call storeInorder(root.left, inOrder); // Store elements in inorder array inOrder[index++] = root.key; // Right recursive call storeInorder(root.right, inOrder); } // function to count the pair of BST // whose sum is greater than k static int countPairUtil( int [] inOrder, int j, int k) { int i = 0; int pair = 0; while (i < j) { // check if sum of value at index // i and j is greater than k if (inOrder[i] + inOrder[j] > k) { pair += j - i; j--; } else { i++; } } // Return number of total pair return pair; } // Function to count the // pair of BST whose sum is // greater than k static int countPair(node root, int k) { // Store the size of BST int numNode = sizeOfTree(root); // Auxiliary array for storing // the inorder traversal of BST int []inOrder = new int [numNode + 1]; index = 0; storeInorder(root, inOrder); // Function call to count the pair return countPairUtil(inOrder, index - 1, k); } // Driver code public static void Main(String[] args) { // create tree node root = null ; root = insert(root, 5); insert(root, 3); insert(root, 2); insert(root, 4); insert(root, 7); insert(root, 6); insert(root, 8); int k = 11; // Print the number of pair Console.Write(countPair(root, k)); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // JavaScript program to Count // pair in BST whose Sum // is greater than K // Structure of each node of BST class node { constructor(item) { this .left = null ; this .right = null ; this .key = item; } } let index; // Function to create a new BST node function newNode(item) { let temp = new node(item); return temp; } /* Function to insert a new node with given key in BST */ function insert(node, key) { // check if the tree is empty if (node == null ) return newNode(key); if (key < node.key) node.left = insert(node.left, key); else if (key > node.key) node.right = insert(node.right, key); /* return the (unchanged) node pointer */ return node; } // Function to return the size of the tree function sizeOfTree(root) { if (root == null ) { return 0; } // Calculate left size recursively let left = sizeOfTree(root.left); // Calculate right size recursively let right = sizeOfTree(root.right); // Return total size recursively return (left + right + 1); } // Function to store inorder traversal of BST function storeInorder(root, inOrder) { // Base condition if (root == null ) { return ; } // Left recursive call storeInorder(root.left, inOrder); // Store elements in inorder array inOrder[index++] = root.key; // Right recursive call storeInorder(root.right, inOrder); } // function to count the pair of BST // whose sum is greater than k function countPairUtil(inOrder, j, k) { let i = 0; let pair = 0; while (i < j) { // check if sum of value at index // i and j is greater than k if (inOrder[i] + inOrder[j] > k) { pair += j - i; j--; } else { i++; } } // Return number of total pair return pair; } // Function to count the // pair of BST whose sum is // greater than k function countPair(root, k) { // Store the size of BST let numNode = sizeOfTree(root); // Auxiliary array for storing // the inorder traversal of BST let inOrder = new Array(numNode + 1); index = 0; storeInorder(root, inOrder); // Function call to count the pair return countPairUtil(inOrder, index - 1, k); } // create tree let root = null ; root = insert(root, 5); insert(root, 3); insert(root, 2); insert(root, 4); insert(root, 7); insert(root, 6); insert(root, 8); let k = 11; // Print the number of pair document.write(countPair(root, k)); </script> |
6
Please Login to comment...