Skip to content
Related Articles

Related Articles

Improve Article

Count pairs in an array such that at least one element is prime

  • Difficulty Level : Medium
  • Last Updated : 01 Jun, 2021

Given an array arr[] of distinct elements, the task is to count the total number of distinct pairs in which at least one element is prime. 
Examples: 
 

Input: arr[] = {1, 3, 10, 7, 8}
Output: 7
Pairs with at least one prime are (1, 3), (1, 7), 
(3, 1), (3, 7), (3, 8), (10, 7), (7, 8).

Input:arr[]={4, 6, 8, 2, 9};
Output: 4

 

Approach: First precompute all the prime till the Maximum element of array using Sieve . Traverse each and every possible pair and check if any of the elements in the pair is prime. If yes, then increment the count.
Below is the implementation of above approach: 
 

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find primes
void sieve(int maxm, int prime[])
{
    prime[0] = prime[1] = 1;
 
    for (int i = 2; i * i <= maxm; i++)
        if (!prime[i])
            for (int j = 2 * i; j <= maxm; j += i)
                prime[j] = 1;
}
 
// Function to count the pair
int countPair(int a[], int n)
{
    // Find the maximum element of the array
    int maxm = *max_element(a, a + n);
    int prime[maxm + 1];
    memset(prime, 0, sizeof(prime));
 
    // Find primes upto maximum
    sieve(maxm, prime);
 
    // Count pairs with at least prime
    int count = 0;
    for (int i = 0; i < n; i++)
        for (int j = i + 1; j < n; j++)
            if (prime[a[i]] == 0 || prime[a[j]] == 0)
                count++;
 
    return count;
}
 
// Driver code
int main()
{
    int arr[] = { 2, 3, 5, 4, 7 };
    int n = 5;
 
    cout << countPair(arr, n);
 
    return 0;
}

Java




// Java implementation of the above approach
 
class GFG
{
    // Function to find primes
    static void sieve(int maxm, int prime[])
    {
        prime[0] = prime[1] = 1;
     
        for (int i = 2; i * i <= maxm; i++)
            if (prime[i] == 0)
                for (int j = 2 * i; j <= maxm; j += i)
                    prime[j] = 1;
    }
     
    // Function to count the pair
    static int countPair(int a[], int n)
    {
        // Find the maximum element of the array
        int maxm = a[0];
         
        for(int i = 1; i < n; i++)
            if(a[i] > maxm)
            maxm = a[i];
         
        int [] prime = new int[maxm + 1];
         
        for(int i = 0; i < maxm + 1; i++)
            prime[i] = 0;
     
        // Find primes upto maximum
        sieve(maxm, prime);
     
        // Count pairs with at least prime
        int count = 0;
        for (int i = 0; i < n; i++)
            for (int j = i + 1; j < n; j++)
                if (prime[a[i]] == 0 || prime[a[j]] == 0)
                    count++;
     
        return count;
    }
     
    // Driver code
    public static void main(String []args)
    {
        int arr[] = { 2, 3, 5, 4, 7 };
        int n = arr.length;
        System.out.println(countPair(arr, n));
    }
}
 
// This code is contributed by ihritik

Python3




# Python 3 implementation of the above approach
from math import sqrt
 
# Function to count the pair
def countPair(a, n):
     
    # Find the maximum element of the array
    maxm = a[0]
    for i in range(len(a)):
        if(a[i] > maxm):
            maxm = a[i]
    prime = [0 for i in range(maxm + 1)]
 
    # Find primes upto maximum
    prime[0] = prime[1] = 1;
 
    for i in range(2, int(sqrt(maxm)) + 1, 1):
        if (prime[i] == 0):
            for j in range(2 * i, maxm + 1, i):
                prime[j] = 1
 
    # Count pairs with at least prime
    count = 0
    for i in range(n):
        for j in range(i + 1, n, 1):
            if (prime[a[i]] == 0 or
                prime[a[j]] == 0):
                count += 1
 
    return count
 
# Driver code
if __name__ == '__main__':
    arr = [2, 3, 5, 4, 7]
    n = 5
 
    print(countPair(arr, n))
 
# This code is contributed by
# Sanjit_Prasad

C#




// C# implementation of the above approach
using System;
 
class GFG
{
    // Function to find primes
    static void sieve(int maxm, int []prime)
    {
        prime[0] = prime[1] = 1;
     
        for (int i = 2; i * i <= maxm; i++)
            if (prime[i] == 0)
                for (int j = 2 * i; j <= maxm; j += i)
                    prime[j] = 1;
    }
     
    // Function to count the pair
    static int countPair(int []a, int n)
    {
        // Find the maximum element of the array
        int maxm = a[0];
         
        for(int i = 1; i < n; i++)
            if(a[i] > maxm)
            maxm = a[i];
         
        int [] prime = new int[maxm + 1];
         
        for(int i = 0; i < maxm + 1; i++)
            prime[i] = 0;
     
        // Find primes upto maximum
        sieve(maxm, prime);
     
        // Count pairs with at least prime
        int count = 0;
        for (int i = 0; i < n; i++)
            for (int j = i + 1; j < n; j++)
                if (prime[a[i]] == 0 || prime[a[j]] == 0)
                    count++;
     
        return count;
    }
     
    // Driver code
    public static void Main()
    {
        int []arr = { 2, 3, 5, 4, 7 };
        int n = arr.Length;
        Console.WriteLine(countPair(arr, n));
    }
}
 
// This code is contributed by ihritik

PHP




<?php
// PHP implementation of the above approach
     
// Function to find primes
function sieve($maxm, $prime)
{
    $prime[0] = $prime[1] = 1;
 
    for ($i = 2; $i * $i <= $maxm; $i++)
        if (!$prime[$i])
            for ($j = 2 * $i;
                 $j <= $maxm; $j += $i)
                $prime[$j] = 1;
}
 
// Function to count the pair
function countPair($a, $n)
{
    // Find the maximum element of the array
    $maxm = max($a);
    $prime = array();
     
    $prime = array_fill(0, $maxm + 1, 0);
 
    // Find primes upto maximum
    sieve($maxm, $prime);
 
    // Count pairs with at least prime
    $count = 0;
    for ($i = 0; $i < $n; $i++)
        for ($j = $i + 1; $j < $n; $j++)
            if ($prime[$a[$i]] == 0 ||
                $prime[$a[$j]] == 0)
                $count++;
 
    return $count;
}
 
// Driver code
$arr = array( 2, 3, 5, 4, 7 );
$n = 5;
 
echo countPair($arr, $n);
 
// This code is contributed by Ryuga
?>

Javascript




<script>
 
// Javascript implementation of the above approach
     
    // Function to find primes
    function sieve(maxm,prime)
    {
        prime[0] = prime[1] = 1;
       
        for (let i = 2; i * i <= maxm; i++)
            if (prime[i] == 0)
                for (let j = 2 * i; j <= maxm; j += i)
                    prime[j] = 1;
    }
     
    // Function to count the pair
    function countPair(a,n)
    {
        // Find the maximum element of the array
        let maxm = a[0];
           
        for(let i = 1; i < n; i++)
            if(a[i] > maxm)
            maxm = a[i];
           
        let prime = new Array(maxm + 1);
           
        for(let i = 0; i < maxm + 1; i++)
            prime[i] = 0;
       
        // Find primes upto maximum
        sieve(maxm, prime);
       
        // Count pairs with at least prime
        let count = 0;
        for (let i = 0; i < n; i++)
            for (let j = i + 1; j < n; j++)
                if (prime[a[i]] == 0 || prime[a[j]] == 0)
                    count++;
       
        return count;
    }
     
    // Driver code
    let arr=[2, 3, 5, 4, 7];
    let n = arr.length;
    document.write(countPair(arr, n));
     
    // This code is contributed by unknown2108
     
     
</script>
Output: 
10

 

Efficient Approach: 
Approach: First precompute all the prime till the Maximum element of array using Sieve . Maintain the count of primes and non-primes. Then count pairs with single prime i.e. nonPrimes * Primes and count pairs with both primes (Primes * (Primes – 1)) / 2. Return the sum of both counts.
Below is the implementation of above approach: 
 



C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
#define ll long long int
using namespace std;
 
// Function to find primes
void sieve(int maxm, int prime[])
{
    prime[0] = prime[1] = 1;
 
    for (int i = 2; i * i <= maxm; i++)
        if (!prime[i])
            for (int j = 2 * i; j <= maxm; j += i)
                prime[j] = 1;
}
 
ll countPair(int a[], int n)
{
    // Find the maximum element of the array
    int maxm = *max_element(a, a + n);
    int prime[maxm + 1];
    memset(prime, 0, sizeof(prime));
 
    // Find primes upto maximum
    sieve(maxm, prime);
 
    // Count number of primes
    int countPrimes = 0;
    for (int i = 0; i < n; i++)
        if (prime[a[i]] == 0)
            countPrimes++;
 
    int nonPrimes = n - countPrimes;
    ll pairswith1Prime = nonPrimes * countPrimes;
    ll pairsWith2Primes = (countPrimes * (countPrimes - 1)) / 2;
 
    return pairswith1Prime + pairsWith2Primes;
}
 
// Driver code
int main()
{
    int arr[] = { 2, 3, 5, 4, 7 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << countPair(arr, n);
 
    return 0;
}

Java




// Java implementation of the above approach
 
class GFG
{
    // Function to find primes
    static void sieve(int maxm, int []prime)
    {
        prime[0] = prime[1] = 1;
 
        for (int i = 2; i * i <= maxm; i++)
            if (prime[i]==0)
                for (int j = 2 * i; j <= maxm; j += i)
                    prime[j] = 1;
    }
 
    static long countPair(int []a, int n)
    {
        // Find the maximum element of the array
        int maxm = a[0];
         
        int i;
        for( i = 1; i < n ; i++)
            if(a[i] > maxm)
                maxm = a[i];
         
        int [] prime = new int[maxm + 1];
         
        for( i = 0; i < maxm + 1 ;i++)
            prime[i] = 0;
             
        // Find primes upto maximum
        sieve(maxm, prime);
     
        // Count number of primes
        int countPrimes = 0;
        for ( i = 0; i < n; i++)
            if (prime[a[i]] == 0)
                countPrimes++;
     
        int nonPrimes = n - countPrimes;
        long pairswith1Prime = nonPrimes *
                                countPrimes;
        long pairsWith2Primes = (countPrimes *
                            (countPrimes - 1)) / 2;
     
        return pairswith1Prime + pairsWith2Primes;
    }
     
    // Driver code
    public static void main(String []args)
    {
        int [] arr = { 2, 3, 5, 4, 7 };
        int n = arr.length;
     
        System.out.println(countPair(arr, n));
    }
}
 
// This code is contributed by ihritik

Python3




# Python3 implementation of the above approach
 
# Function to find primes
def sieve(maxm, prime):
 
    prime[0] = prime[1] = 1;
    i = 2;
 
    while (i * i <= maxm):
        if (prime[i] == 0):
            for j in range(2 * i, maxm + 1, i):
                prime[j] = 1;
        i += 1;
 
def countPair(a, n):
 
    # Find the maximum element
    # of the array
    maxm = max(a);
    prime = [0] * (maxm + 1);
 
    # Find primes upto maximum
    sieve(maxm, prime);
 
    # Count number of primes
    countPrimes = 0;
    for i in range(n):
        if (prime[a[i]] == 0):
            countPrimes += 1;
 
    nonPrimes = n - countPrimes;
    pairswith1Prime = nonPrimes * countPrimes;
    pairsWith2Primes = (countPrimes *
                       (countPrimes - 1)) // 2;
 
    return pairswith1Prime + pairsWith2Primes;
 
# Driver code
arr = [ 2, 3, 5, 4, 7 ];
n = len(arr);
 
print(countPair(arr, n));
 
# This code is contributed by mits

C#




// C# implementation of the above approach
using System;
 
class GFG
{
    // Function to find primes
    static void sieve(int maxm, int []prime)
    {
        prime[0] = prime[1] = 1;
 
        for (int i = 2; i * i <= maxm; i++)
            if (prime[i] == 0)
                for (int j = 2 * i; j <= maxm; j += i)
                    prime[j] = 1;
    }
 
    static long countPair(int []a, int n)
    {
        // Find the maximum element of the array
        int maxm = a[0];
         
        int i;
        for( i = 1; i < n ;i++)
            if(a[i] > maxm)
                maxm = a[i];
         
        int [] prime = new int[maxm + 1];
         
        for( i = 0; i < maxm + 1 ;i++)
            prime[i] = 0;
             
        // Find primes upto maximum
        sieve(maxm, prime);
     
        // Count number of primes
        int countPrimes = 0;
        for ( i = 0; i < n; i++)
            if (prime[a[i]] == 0)
                countPrimes++;
     
        int nonPrimes = n - countPrimes;
        long pairswith1Prime = nonPrimes *
                                countPrimes;
        long pairsWith2Primes = (countPrimes *
                            (countPrimes - 1)) / 2;
     
        return pairswith1Prime + pairsWith2Primes;
    }
     
    // Driver code
    public static void Main()
    {
        int [] arr = { 2, 3, 5, 4, 7 };
        int n = arr.Length;
        Console.WriteLine(countPair(arr, n));
    }
}
 
// This code is contributed by ihritik

PHP




<?php
// PHP implementation of the above approach
 
// Function to find primes
function sieve($maxm, $prime)
{
    $prime[0] = $prime[1] = 1;
 
    for ($i = 2; $i * $i <= $maxm; $i++)
        if (!$prime[$i])
            for ($j = 2 * $i;
                 $j <= $maxm; $j += $i)
                $prime[$j] = 1;
}
 
function countPair($a, $n)
{
    // Find the maximum element
    // of the array
    $maxm = max($a);
    $prime = array_fill(0, $maxm + 1,0);
 
    // Find primes upto maximum
    sieve($maxm, $prime);
 
    // Count number of primes
    $countPrimes = 0;
    for ($i = 0; $i < $n; $i++)
        if ($prime[$a[$i]] == 0)
            $countPrimes++;
 
    $nonPrimes = $n - $countPrimes;
    $pairswith1Prime = $nonPrimes * $countPrimes;
    $pairsWith2Primes = ($countPrimes *
                        ($countPrimes - 1)) / 2;
 
    return $pairswith1Prime + $pairsWith2Primes;
}
 
// Driver code
$arr = array( 2, 3, 5, 4, 7 );
$n = count($arr);
 
echo countPair($arr, $n);
 
// This code is contributed by mits
?>

Javascript




<script>
 
    // JavaScript implementation of the above approach
     
    // Function to find primes
    function sieve(maxm, prime)
    {
        prime[0] = prime[1] = 1;
  
        for (let i = 2; i * i <= maxm; i++)
            if (prime[i] == 0)
                for (let j = 2 * i; j <= maxm; j += i)
                    prime[j] = 1;
    }
  
    function countPair(a, n)
    {
        // Find the maximum element of the array
        let maxm = a[0];
          
        let i;
        for( i = 1; i < n ;i++)
            if(a[i] > maxm)
                maxm = a[i];
          
        let prime = new Array(maxm + 1);
          
        for( i = 0; i < maxm + 1 ;i++)
            prime[i] = 0;
              
        // Find primes upto maximum
        sieve(maxm, prime);
      
        // Count number of primes
        let countPrimes = 0;
        for ( i = 0; i < n; i++)
            if (prime[a[i]] == 0)
                countPrimes++;
      
        let nonPrimes = n - countPrimes;
        let pairswith1Prime = nonPrimes * countPrimes;
        let pairsWith2Primes = parseInt((countPrimes *
        (countPrimes - 1)) / 2, 10);
      
        return (pairswith1Prime + pairsWith2Primes);
    }
     
    let arr = [ 2, 3, 5, 4, 7 ];
    let n = arr.length;
    document.write(countPair(arr, n));
     
</script>
Output: 
10

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :