Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Count pairs from an array with even product of count of distinct prime factors

  • Difficulty Level : Medium
  • Last Updated : 29 Jul, 2021

Given two arrays A[] and B[] consisting of N and M integers respectively, the task is to count pairs (A[i], B[j]) such that the product of their count of distinct prime factors is even.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: A[] = {1, 2, 3}, B[] = {4, 5, 6}, N = 3, M = 3
Output: 2
Explanation:



  • Replacing all array elements with the count of their distinct prime factors modifies the arrays to A[] = {0, 1, 1} and B[] = {1, 1, 2}.
  • Therefore, total pairs with even product are {{2, 6}, {3, 6}}.

Input: A[] = {1, 7}, B[] = {5, 6}, N = 2, M = 2
Output: 1
Explanation:

  • Replacing all array elements with the count of their distinct prime factors modifies the arrays to A[] = {0, 1} and B[] = {1, 2}.
  • Therefore, total pairs with even product is {7, 6}.

Naive Approach: The simplest approach is to generate all possible pairs (A[i], B[j]) from both arrays and for each pair, calculate the count of distinct prime factors of the array elements and check if their product is even or not. If found to be true, then increment the count of such pairs.

Time Complexity: O(N5/2)
Auxiliary Space: O(1)

Efficient Approach: The above approach can be optimized by precalculating the count of distinct prime factors of all the numbers up to the largest element from both the arrays and use the following property of product of two numbers:

  • Odd * Odd = Odd 
  • Even * Odd = Even 
  • Odd * Even = Even
  • Even * Even = Even 

Follow the steps below to solve the problem:

  • First, calculate distinct prime factors of all numbers up to MAX and store it in vector<int> say countDistinct.
  • Initialize two variables, say evenCount and oddCount, to store the count of elements with even and odd count of distinct prime factors of the array elements in B[].
  • Traverse the array B[]. If, countDistinct[B[i]] = 0, skip this step. If it is odd, increment oddCount by 1. Otherwise, increment evenCount by one.
  • Initialize a variable evenPairs to 0.
  • Traverse the array A[] and increment evenPairs by evenCount if countDistinct[A[i]] is odd.
  • Otherwise, increment evenPairs by evenCount + oddCount.
  • Print the value of evenPairs.

Below is the implementation of the above approach:

C++




// C++ implementation of
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
#define MAX 1000000
 
// Function to calculate count of
// distinct prime factors of a number
void countOfPrimefactors(vector<int>& CountDistinct)
{
    bool prime[MAX + 1];
 
    for (int i = 0; i <= MAX; i++) {
        CountDistinct[i] = 0;
        prime[i] = true;
    }
 
    // Sieve of Eratosthenes
    for (long long int i = 2; i <= MAX; i++) {
 
        if (prime[i] == true) {
            CountDistinct[i] = 1;
 
            for (long long int j = i * 2; j <= MAX;
                 j += i) {
 
                CountDistinct[j]++;
                prime[j] = false;
            }
        }
    }
}
 
// Function to count pairs with even
// product of distinct prime factors
int CountEvenPair(int A[], int B[], int N, int M)
{
    // Stores count of
    // distinct prime factors
    vector<int> countDistinct(MAX + 1);
 
    countOfPrimefactors(countDistinct);
 
    // Stores the count of numbers
    // with even prime factors in B[]
    int evenCount = 0;
 
    // Stores the count of numbers
    // with odd prime factors in B[]
    int oddCount = 0;
 
    // Even Product Pairs
    int evenPairs = 0;
 
    // Traverse the array B[]
    for (int i = 0; i < M; i++) {
 
        // Since, product has to be
        // positive i.e > 0
 
        if (countDistinct[B[i]] == 0)
            continue;
 
        // If count of prime factors is odd
        if (countDistinct[B[i]] & 1) {
 
            // Increment oddCount by 1
            oddCount++;
        }
        else {
 
            // Increment evenCount by 1
            evenCount++;
        }
    }
 
    for (int i = 0; i < N; i++) {
 
        // Since, product has to be
        // positive i.e > 0
 
        if (countDistinct[A[i]] == 0)
            continue;
 
        // If count of prime factors is odd
        if (countDistinct[A[i]] & 1) {
 
            // odd * even = even
            evenPairs += (evenCount);
        }
 
        // If count of prime factors is even
        else {
 
            // even * odd = even
            // even * even = even
            evenPairs += evenCount + oddCount;
        }
    }
 
    return evenPairs;
}
 
// Driver Code
int main()
{
    int A[] = { 1, 2, 3 };
    int B[] = { 4, 5, 6 };
 
    int N = sizeof(A) / sizeof(A[0]);
    int M = sizeof(B) / sizeof(B[0]);
 
    cout << CountEvenPair(A, B, N, M);
 
    return 0;
}

Java




// Java program for the above approach
import java.util.*;
 
class GFG
{
 
  static int MAX = 1000000;
 
  // Function to calculate count of
  // distinct prime factors of a number
  static void countOfPrimefactors(int[] CountDistinct)
  {
    boolean[]  prime = new boolean[MAX + 1];
 
    for (int i = 0; i <= MAX; i++) {
      CountDistinct[i] = 0;
      prime[i] = true;
    }
 
    // Sieve of Eratosthenes
    for (int i = 2; i <= MAX; i++) {
 
      if (prime[i] == true) {
        CountDistinct[i] = 1;
 
        for (int j = i * 2; j <= MAX;
             j += i) {
 
          CountDistinct[j]++;
          prime[j] = false;
        }
      }
    }
  }
 
  // Function to count pairs with even
  // product of distinct prime factors
  static int CountEvenPair(int A[], int B[], int N, int M)
  {
    // Stores count of
    // distinct prime factors
    int[] countDistinct = new int[(MAX + 1)];
 
    countOfPrimefactors(countDistinct);
 
    // Stores the count of numbers
    // with even prime factors in B[]
    int evenCount = 0;
 
    // Stores the count of numbers
    // with odd prime factors in B[]
    int oddCount = 0;
 
    // Even Product Pairs
    int evenPairs = 0;
 
    // Traverse the array B[]
    for (int i = 0; i < M; i++) {
 
      // Since, product has to be
      // positive i.e > 0
 
      if (countDistinct[B[i]] == 0)
        continue;
 
      // If count of prime factors is odd
      if ((countDistinct[B[i]] & 1) != 0) {
 
        // Increment oddCount by 1
        oddCount++;
      }
      else {
 
        // Increment evenCount by 1
        evenCount++;
      }
    }
 
    for (int i = 0; i < N; i++) {
 
      // Since, product has to be
      // positive i.e > 0
 
      if (countDistinct[A[i]] == 0)
        continue;
 
      // If count of prime factors is odd
      if ((countDistinct[A[i]] & 1) != 0) {
 
        // odd * even = even
        evenPairs += (evenCount);
      }
 
      // If count of prime factors is even
      else {
 
        // even * odd = even
        // even * even = even
        evenPairs += evenCount + oddCount;
      }
    }
    return evenPairs;
  }
 
 
  // Driver Code
  public static void main(String[] args)
  {
    int A[] = { 1, 2, 3 };
    int B[] = { 4, 5, 6 };
 
    int N = A.length;
    int M = B.length;
 
    System.out.println(CountEvenPair(A, B, N, M));
  }
}
 
// This code is contributed by sanjoy_62.

Python3




# Python 3 implementation of
# the above approach
MAX = 1000000
 
# Function to calculate count of
# distinct prime factors of a number
def countOfPrimefactors(CountDistinct):
    global MAX
    prime = [0 for i in range(MAX + 1)]
 
    for i in range(MAX+1):
        CountDistinct[i] = 0
        prime[i] = True
 
    # Sieve of Eratosthenes
    for i in range(2,MAX+1,1):
        if (prime[i] == True):
            CountDistinct[i] = 1
 
            for j in range(i * 2,MAX+1,i):
                CountDistinct[j] += 1
                prime[j] = False
             
# Function to count pairs with even
# product of distinct prime factors
def CountEvenPair(A, B, N, M):
    global MAX
     
    # Stores count of
    # distinct prime factors
    countDistinct = [0 for i in range(MAX + 1)]
    countOfPrimefactors(countDistinct)
 
    # Stores the count of numbers
    # with even prime factors in B[]
    evenCount = 0
 
    # Stores the count of numbers
    # with odd prime factors in B[]
    oddCount = 0
 
    # Even Product Pairs
    evenPairs = 0
 
    # Traverse the array B[]
    for i in range(M):
       
        # Since, product has to be
        # positive i.e > 0
        if (countDistinct[B[i]] == 0):
            continue
 
        # If count of prime factors is odd
        if (countDistinct[B[i]] & 1):
           
            # Increment oddCount by 1
            oddCount += 1
         
        else:
            # Increment evenCount by 1
            evenCount += 1
 
    for i in range(N):
       
        # Since, product has to be
        # positive i.e > 0
 
        if (countDistinct[A[i]] == 0):
            continue
 
        # If count of prime factors is odd
        if (countDistinct[A[i]] & 1):
           
            # odd * even = even
            evenPairs += (evenCount)
 
        # If count of prime factors is even
        else:
            # even * odd = even
            # even * even = even
            evenPairs += evenCount + oddCount
 
    return evenPairs
 
# Driver Code
if __name__ == '__main__':
    A =  [1, 2, 3]
    B =  [4, 5, 6]
    N = len(A)
    M = len(B)
    print(CountEvenPair(A, B, N, M))
      
    # This code is contributed by SURENDRA_GANGWAR.

C#




// C# program for the above approach
using System;
public class GFG
{
 
  static int MAX = 1000000;
 
  // Function to calculate count of
  // distinct prime factors of a number
  static void countOfPrimefactors(int[] CountDistinct)
  {
    bool[]  prime = new bool[MAX + 1];
 
    for (int i = 0; i <= MAX; i++) {
      CountDistinct[i] = 0;
      prime[i] = true;
    }
 
    // Sieve of Eratosthenes
    for (int i = 2; i <= MAX; i++) {
 
      if (prime[i] == true) {
        CountDistinct[i] = 1;
 
        for (int j = i * 2; j <= MAX;
             j += i) {
 
          CountDistinct[j]++;
          prime[j] = false;
        }
      }
    }
  }
 
  // Function to count pairs with even
  // product of distinct prime factors
  static int CountEvenPair(int []A, int []B, int N, int M)
  {
     
    // Stores count of
    // distinct prime factors
    int[] countDistinct = new int[(MAX + 1)];
    countOfPrimefactors(countDistinct);
 
    // Stores the count of numbers
    // with even prime factors in B[]
    int evenCount = 0;
 
    // Stores the count of numbers
    // with odd prime factors in B[]
    int oddCount = 0;
 
    // Even Product Pairs
    int evenPairs = 0;
 
    // Traverse the array B[]
    for (int i = 0; i < M; i++) {
 
      // Since, product has to be
      // positive i.e > 0
      if (countDistinct[B[i]] == 0)
        continue;
 
      // If count of prime factors is odd
      if ((countDistinct[B[i]] & 1) != 0) {
 
        // Increment oddCount by 1
        oddCount++;
      }
      else {
 
        // Increment evenCount by 1
        evenCount++;
      }
    }
 
    for (int i = 0; i < N; i++) {
 
      // Since, product has to be
      // positive i.e > 0
 
      if (countDistinct[A[i]] == 0)
        continue;
 
      // If count of prime factors is odd
      if ((countDistinct[A[i]] & 1) != 0) {
 
        // odd * even = even
        evenPairs += (evenCount);
      }
 
      // If count of prime factors is even
      else {
 
        // even * odd = even
        // even * even = even
        evenPairs += evenCount + oddCount;
      }
    }
    return evenPairs;
  }
 
  // Driver Code
  public static void Main(string[] args)
  {
    int []A = { 1, 2, 3 };
    int []B = { 4, 5, 6 };
 
    int N = A.Length;
    int M = B.Length;
 
    Console.WriteLine(CountEvenPair(A, B, N, M));
  }
}
 
// This code is contributed by AnkThon

Javascript




<script>
// js program for the above approach
 
 
  let countDistinct = Array(1000000 + 1);
// Function to calculate count of
// distinct prime factors of a number
function countOfPrimefactors(CountDistinct)
{
  let MAX = 1000000;
  let prime = Array(MAX + 1);
   
  for (let i = 0; i <= MAX; i++) {
    CountDistinct[i] = 0;
    prime[i] = true;
  }
 
  // Sieve of Eratosthenes
  for (let i = 2; i <= MAX; i++) {
 
    if (prime[i] == true) {
      CountDistinct[i] = 1;
 
      for (let j = i * 2; j <= MAX;
           j += i) {
 
        CountDistinct[j]++;
        prime[j] = false;
      }
    }
  }
 
}
 
 
// Function to count pairs with even
// product of distinct prime factors
function CountEvenPair(A,B,N,M)
{
   
  let MAX = 1000000;
  // Stores count of
  // distinct prime factors
   
  countOfPrimefactors(countDistinct);
 
  // Stores the count of numbers
  // with even prime factors in B[]
  let evenCount = 0;
 
  // Stores the count of numbers
  // with odd prime factors in B[]
  let oddCount = 0;
 
  // Even Product Pairs
  let evenPairs = 0;
 
  // Traverse the array B[]
  for (let i = 0; i < M; i++) {
 
    // Since, product has to be
    // positive i.e > 0
    if (countDistinct[B[i]] == 0)
      continue;
 
    // If count of prime factors is odd
    if ((countDistinct[B[i]] & 1) != 0) {
 
      // Increment oddCount by 1
      oddCount++;
    }
    else {
 
      // Increment evenCount by 1
      evenCount++;
    }
  }
 
  for (let i = 0; i < N; i++) {
 
    // Since, product has to be
    // positive i.e > 0
 
    if (countDistinct[A[i]] == 0)
      continue;
 
    // If count of prime factors is odd
    if ((countDistinct[A[i]] & 1) != 0) {
 
      // odd * even = even
      evenPairs += (evenCount);
    }
 
    // If count of prime factors is even
    else {
 
      // even * odd = even
      // even * even = even
      evenPairs += evenCount + oddCount;
    }
  }
  return evenPairs;
}
 
 
// Driver Code
let A = [1, 2, 3];
let B = [4, 5, 6];
 
let N = A.length;
let M = B.length;
 
document.write(CountEvenPair(A, B, N, M));
 
</script>
Output: 
2

 

Time Complexity: O(N * log(N))
Auxiliary Space: O(N)

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :