Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Count all distinct pairs with difference equal to k

  • Difficulty Level : Medium
  • Last Updated : 11 Nov, 2021

Given an integer array and a positive integer k, count all distinct pairs with differences equal to k. 

Examples: 

Become a success story instead of just reading about them. Prepare for coding interviews at Amazon and other top product-based companies with our Amazon Test Series. Includes topic-wise practice questions on all important DSA topics along with 10 practice contests of 2 hours each. Designed by industry experts that will surely help you practice and sharpen your programming skills. Wait no more, start your preparation today!

Input: arr[] = {1, 5, 3, 4, 2}, k = 3
Output: 2
There are 2 pairs with difference 3, the pairs are {1, 4} and {5, 2} 

Input: arr[] = {8, 12, 16, 4, 0, 20}, k = 4
Output: 5
There are 5 pairs with difference 4, the pairs are {0, 4}, {4, 8}, 
{8, 12}, {12, 16} and {16, 20} 

Method 1 (Simple) 
A simple solution is to consider all pairs one by one and check difference between every pair. Following program implements the simple solution. We run two loops: the outer loop picks the first element of pair, the inner loop looks for the other element. This solution doesn’t work if there are duplicates in array as the requirement is to count only distinct pairs.

C++




/* A simple program to count pairs with difference k*/
#include<iostream>
using namespace std;
 
int countPairsWithDiffK(int arr[], int n, int k)
{
    int count = 0;
     
    // Pick all elements one by one
    for (int i = 0; i < n; i++)
    {      
        // See if there is a pair of this picked element
        for (int j = i+1; j < n; j++)
            if (arr[i] - arr[j] == k || arr[j] - arr[i] == k )
                  count++;
    }
    return count;
}
 
// Driver program to test above function
int main()
{
    int arr[] =  {1, 5, 3, 4, 2};
    int n = sizeof(arr)/sizeof(arr[0]);
    int k = 3;
    cout << "Count of pairs with given diff is "
         << countPairsWithDiffK(arr, n, k);
    return 0;
}

Java




// A simple Java program to
//count pairs with difference k
import java.util.*;
import java.io.*;
 
class GFG {
 
    static int countPairsWithDiffK(int arr[],
                                    int n, int k)
    {
        int count = 0;
 
        // Pick all elements one by one
        for (int i = 0; i < n; i++)
        {
            // See if there is a pair
            // of this picked element
            for (int j = i + 1; j < n; j++)
                if (arr[i] - arr[j] == k ||
                    arr[j] - arr[i] == k)
                    count++;
        }
        return count;
    }
 
    // Driver code
    public static void main(String args[])
    {
        int arr[] = { 1, 5, 3, 4, 2 };
        int n = arr.length;
        int k = 3;
        System.out.println("Count of pairs with given diff is "
                        + countPairsWithDiffK(arr, n, k));
    }
}
 
// This code is contributed
// by Sahil_Bansall

Python3




# A simple program to count pairs with difference k
 
def countPairsWithDiffK(arr, n, k):
    count = 0
     
    # Pick all elements one by one
    for i in range(0, n):
         
        # See if there is a pair of this picked element
        for j in range(i+1, n) :
             
            if arr[i] - arr[j] == k or arr[j] - arr[i] == k:
                count += 1
                 
    return count
 
# Driver program
arr = [1, 5, 3, 4, 2]
 
n = len(arr)
k = 3
print ("Count of pairs with given diff is ",
                countPairsWithDiffK(arr, n, k))

C#




// A simple C# program to count pairs with
// difference k
using System;
 
class GFG {
     
    static int countPairsWithDiffK(int []arr,
                                int n, int k)
    {
        int count = 0;
 
        // Pick all elements one by one
        for (int i = 0; i < n; i++)
        {
             
            // See if there is a pair
            // of this picked element
            for (int j = i + 1; j < n; j++)
                if (arr[i] - arr[j] == k ||
                      arr[j] - arr[i] == k)
                    count++;
        }
         
        return count;
    }
 
    // Driver code
    public static void Main()
    {
        int []arr = { 1, 5, 3, 4, 2 };
        int n = arr.Length;
        int k = 3;
         
        Console.WriteLine("Count of pairs with "
                             + " given diff is "
               + countPairsWithDiffK(arr, n, k));
    }
}
 
// This code is contributed by Sam007.

PHP




<?php
// A simple PHP program to count
// pairs with difference k
 
function countPairsWithDiffK($arr, $n,
                                   $k)
{
    $count = 0;
     
    // Pick all elements one by one
    for($i = 0; $i < $n; $i++)
    {
         
        // See if there is a pair of
        // this picked element
        for($j = $i + 1; $j < $n; $j++)
            if ($arr[$i] - $arr[$j] == $k or
                $arr[$j] - $arr[$i] == $k)
                $count++;
    }
    return $count;
}
 
    // Driver Code
    $arr = array(1, 5, 3, 4, 2);
    $n = count($arr);
    $k = 3;
    echo "Count of pairs with given diff is "
        , countPairsWithDiffK($arr, $n, $k);
         
// This code is contributed by anuj_67.
?>

Javascript




<script>
 
/* A simple program to count pairs
   with difference k*/
 
    function countPairsWithDiffK(arr, n, k)
{
     count = 0;
      
    // Pick all elements one by one
    for (let i = 0; i < n; i++)
    {     
        // See if there is a pair of this
        // picked element
        for (let j = i+1; j < n; j++)
            if (arr[i] - arr[j] == k ||
                arr[j] - arr[i] == k )
                  count++;
    }
    return count;
}
  
// Driver program to test above function
     arr =new Array(1, 5, 3, 4, 2);
     n = arr.length;
     k = 3;
    document.write("Count of pairs with given diff is "
            + countPairsWithDiffK(arr, n, k));
             
   // This code is contributed by simranarora5sos
    
</script>

Output: 



Count of pairs with given diff is 2

Time Complexity of O(n2)

Method 2 (Use Sorting) 
We can find the count in O(nLogn) time using a O(nLogn) sorting algorithm like Merge Sort, Heap Sort, etc. Following are the detailed steps. 

1) Initialize count as 0
2) Sort all numbers in increasing order.
3) Remove duplicates from array.
4) Do following for each element arr[i]
   a) Binary Search for arr[i] + k in subarray from i+1 to n-1.
   b) If arr[i] + k found, increment count. 
5) Return count. 

C++




/* A sorting based program to count pairs with difference k*/
#include <iostream>
#include <algorithm>
using namespace std;
 
/* Standard binary search function */
int binarySearch(int arr[], int low, int high, int x)
{
    if (high >= low)
    {
        int mid = low + (high - low)/2;
        if (x == arr[mid])
            return mid;
        if (x > arr[mid])
            return binarySearch(arr, (mid + 1), high, x);
        else
            return binarySearch(arr, low, (mid -1), x);
    }
    return -1;
}
 
/* Returns count of pairs with difference k in arr[] of size n. */
int countPairsWithDiffK(int arr[], int n, int k)
{
    int count = 0, i;
    sort(arr, arr+n);  // Sort array elements
 
    /* code to remove duplicates from arr[] */
   
    // Pick a first element point
    for (i = 0; i < n-1; i++)
        if (binarySearch(arr, i+1, n-1, arr[i] + k) != -1)
            count++;
 
    return count;
}
 
// Driver program
int main()
{
    int arr[] = {1, 5, 3, 4, 2};
    int n = sizeof(arr)/sizeof(arr[0]);
    int k = 3;
    cout << "Count of pairs with given diff is "
        << countPairsWithDiffK(arr, n, k);
    return 0;
}

Java




// A sorting base java program to
// count pairs with difference k
import java.util.*;
import java.io.*;
 
class GFG {
     
    // Standard binary search function //
    static int binarySearch(int arr[], int low,
                               int high, int x)
    {
        if (high >= low)
        {
            int mid = low + (high - low) / 2;
            if (x == arr[mid])
                return mid;
            if (x > arr[mid])
                return binarySearch(arr, (mid + 1),
                                          high, x);
            else
                return binarySearch(arr, low,
                                    (mid - 1), x);
        }
        return -1;
    }
 
    // Returns count of pairs with
    // difference k in arr[] of size n.
    static int countPairsWithDiffK(int arr[], int n, int k)
    {
        int count = 0, i;
         
        // Sort array elements
        Arrays.sort(arr);
 
        // code to remove duplicates from arr[]
 
        // Pick a first element point
        for (i = 0; i < n - 1; i++)
            if (binarySearch(arr, i + 1, n - 1,
                             arr[i] + k) != -1)
                count++;
 
        return count;
    }
 
    // Driver code
    public static void main(String args[])
    {
        int arr[] = { 1, 5, 3, 4, 2 };
        int n = arr.length;
        int k = 3;
        System.out.println("Count of pairs with given diff is "
                            + countPairsWithDiffK(arr, n, k));
    }
}
 
// This code is contributed by Sahil_Bansall

Python




# A sorting based program to
# count pairs with difference k
 
# Standard binary search function
def binarySearch(arr, low, high, x):
 
    if (high >= low):
     
        mid = low + (high - low)//2
        if x == arr[mid]:
            return (mid)
        elif(x > arr[mid]):
            return binarySearch(arr, (mid + 1), high, x)
        else:
            return binarySearch(arr, low, (mid -1), x)
     
    return -1
 
 
# Returns count of pairs with
# difference k in arr[] of size n.
def countPairsWithDiffK(arr, n, k):
 
    count = 0
    arr.sort() # Sort array elements
 
    # code to remove
    # duplicates from arr[]
 
    # Pick a first element point
    for i in range (0, n - 2):
        if (binarySearch(arr, i + 1, n - 1,
                         arr[i] + k) != -1):
            count += 1
                 
 
    return count
 
# Driver Code
arr= [1, 5, 3, 4, 2]
n = len(arr)
k = 3
print ("Count of pairs with given diff is ",
             countPairsWithDiffK(arr, n, k))
 
# This code is contributed
# by Shivi_Aggarwal

C#




// A sorting base C# program to
// count pairs with difference k
using System;
 
class GFG {
     
    // Standard binary search function
    static int binarySearch(int []arr, int low,
                            int high, int x)
    {
        if (high >= low)
        {
            int mid = low + (high - low) / 2;
            if (x == arr[mid])
                return mid;
            if (x > arr[mid])
                return binarySearch(arr, (mid + 1),
                                          high, x);
            else
                return binarySearch(arr, low,
                                     (mid - 1), x);
        }
         
        return -1;
    }
 
    // Returns count of pairs with
    // difference k in arr[] of size n.
    static int countPairsWithDiffK(int []arr,
                                   int n, int k)
    {
         
        int count = 0, i;
         
        // Sort array elements
        Array.Sort(arr);
 
        // code to remove duplicates from arr[]
 
        // Pick a first element point
        for (i = 0; i < n - 1; i++)
            if (binarySearch(arr, i + 1, n - 1,
                            arr[i] + k) != -1)
                count++;
 
        return count;
    }
 
    // Driver code
    public static void Main()
    {
        int []arr = { 1, 5, 3, 4, 2 };
        int n = arr.Length;
        int k = 3;
         
        Console.WriteLine("Count of pairs with"
                            + " given diff is "
              + countPairsWithDiffK(arr, n, k));
    }
}
 
// This code is contributed by Sam007.

PHP




<?php
// A sorting based PHP program to
// count pairs with difference k
 
// Standard binary search function
function binarySearch($arr, $low,
                      $high, $x)
{
    if ($high >= $low)
    {
        $mid = $low + ($high - $low)/2;
        if ($x == $arr[$mid])
            return $mid;
             
        if ($x > $arr[$mid])
            return binarySearch($arr, ($mid + 1),
                                      $high, $x);
        else
            return binarySearch($arr, $low,
                               ($mid -1), $x);
    }
    return -1;
}
 
/* Returns count of pairs with
   difference k in arr[] of size n. */
function countPairsWithDiffK($arr, $n, $k)
{
    $count = 0;
    $i;
     
    // Sort array elements
    sort($arr);
 
    // Code to remove duplicates
    // from arr[]
     
    // Pick a first element point
    for ($i = 0; $i < $n - 1; $i++)
        if (binarySearch($arr, $i + 1, $n - 1,
                         $arr[$i] + $k) != -1)
            $count++;
 
    return $count;
}
 
    // Driver Code
    $arr = array(1, 5, 3, 4, 2);
    $n = count($arr);
    $k = 3;
    echo "Count of pairs with given diff is "
         , countPairsWithDiffK($arr, $n, $k);
          
// This code is contributed by anuj-67.
?>

Javascript




<script>
 
/* A sorting based program to count
pairs with difference k*/
 
/* Standard binary search function */
function binarySearch(arr, low, high, x)
{
    if (high >= low)
    {
        let mid = low + Math.floor((high - low)/2);
        if (x == arr[mid])
            return mid;
        if (x > arr[mid])
            return binarySearch(arr, (mid + 1), high, x);
        else
            return binarySearch(arr, low, (mid -1), x);
    }
    return -1;
}
 
/* Returns count of pairs with difference
k in arr[] of size n. */
function countPairsWithDiffK(arr, n, k)
{
    let count = 0, i;
    // Sort array elements
    arr.sort((a, b) => a - b);
 
    /* code to remove duplicates from arr[] */
 
    // Pick a first element point
    for (i = 0; i < n-1; i++)
        if (binarySearch(arr, i+1, n-1, arr[i] + k) != -1)
            count++;
 
    return count;
}
 
// Driver program
    let arr = [1, 5, 3, 4, 2];
    let n = arr.length;
    let k = 3;
    document.write("Count of pairs with given diff is "
        + countPairsWithDiffK(arr, n, k));
 
 
// This code is contributed by Surbhi Tyagi.
 
</script>

Output:  

Count of pairs with given diff is 2

Time complexity: The first step (sorting) takes O(nLogn) time. The second step runs binary search n times, so the time complexity of second step is also O(nLogn). Therefore, overall time complexity is O(nLogn). The second step can be optimized to O(n), see this.

Method 3 (Use Self-balancing BST) 
We can also a self-balancing BST like AVL tree or Red Black tree to solve this problem. Following is a detailed algorithm. 

1) Initialize count as 0.
2) Insert all elements of arr[] in an AVL tree. While inserting, 
   ignore an element if already present in AVL tree.
3) Do following for each element arr[i].
   a) Search for arr[i] + k in AVL tree, if found then increment count.
   b) Search for arr[i] - k in AVL tree, if found then increment count.
   c) Remove arr[i] from AVL tree. 

Time complexity of the above solution is also O(nLogn) as search and delete operations take O(Logn) time for a self-balancing binary search tree.

Method 4 (Use Hashing) 
We can also use hashing to achieve the average time complexity as O(n) for many cases. 

1) Initialize count as 0.
2) Insert all distinct elements of arr[] in a hash map.  While inserting, 
   ignore an element if already present in the hash map.
3) Do following for each element arr[i].
   a) Look for arr[i] + k in the hash map, if found then increment count.
   b) Look for arr[i] - k in the hash map, if found then increment count.
   c) Remove arr[i] from hash table. 

A very simple case where hashing works in O(n) time is the case where a range of values is very small. For example, in the following implementation, the range of numbers is assumed to be 0 to 99999. A simple hashing technique to use values as an index can be used.  



C++




/* An efficient program to count pairs with difference k when the range
   numbers is small */
#define MAX 100000
int countPairsWithDiffK(int arr[], int n, int k)
{
    int count = 0;  // Initialize count
 
    // Initialize empty hashmap.
    bool hashmap[MAX] = {false};
 
    // Insert array elements to hashmap
    for (int i = 0; i < n; i++)
        hashmap[arr[i]] = true;
 
    for (int i = 0; i < n; i++)
    {
        int x = arr[i];
        if (x - k >= 0 && hashmap[x - k])
            count++;
        if (x + k < MAX && hashmap[x + k])
            count++;
        hashmap[x] = false;
    }
    return count;
}

Java




/* An efficient program to count pairs with difference k when the range
   numbers is small */
 
static int MAX=100000;
public static int countPairsWithDiffK(int arr[], int n, int k)
{
    int count = 0// Initialize count
 
    // Initialize empty hashmap.
    boolean hashmap[MAX] = {false};
 
    // Insert array elements to hashmap
    for (int i = 0; i < n; i++)
        hashmap[arr[i]] = true;
 
    for (int i = 0; i < n; i++)
    {
        int x = arr[i];
        if (x - k >= 0 && hashmap[x - k])
            count++;
        if (x + k < MAX && hashmap[x + k])
            count++;
        hashmap[x] = false;
    }
    return count;
}
 
// This code is contributed by RohitOberoi.

C#




/* An efficient program to count pairs with difference k when the range
   numbers is small */
 
static int MAX=100000;
public static int countPairsWithDiffK(int []arr, int n, int k)
{
    int count = 0;  // Initialize count
 
    // Initialize empty hashmap.
    bool hashmap[MAX] = {false};
 
    // Insert array elements to hashmap
    for (int i = 0; i < n; i++)
        hashmap[arr[i]] = true;
 
    for (int i = 0; i < n; i++)
    {
        int x = arr[i];
        if (x - k >= 0 && hashmap[x - k])
            count++;
        if (x + k < MAX && hashmap[x + k])
            count++;
        hashmap[x] = false;
    }
    return count;
}
 
 
// This code is contributed by famously.

Javascript




<script>
 
/* An efficient program to count pairs with difference k when the range
   numbers is small */
var MAX = 100000;
function countPairsWithDiffK(arr, n, k)
{
    var count = 0;  // Initialize count
 
    // Initialize empty hashmap.
    var hashmap = Array(MAX).fill(false);
 
    // Insert array elements to hashmap
    for (var i = 0; i < n; i++)
        hashmap[arr[i]] = true;
 
    for (var i = 0; i < n; i++)
    {
        var x = arr[i];
        if (x - k >= 0 && hashmap[x - k])
            count++;
        if (x + k < MAX && hashmap[x + k])
            count++;
        hashmap[x] = false;
    }
    return count;
}
 
</script>

Method 5 (Use Sorting) 

  • Sort the array arr
  • Take two pointers, l, and r, both pointing to 1st element
  • Take the difference arr[r] – arr[l]
    • If value diff is K, increment count and move both pointers to next element
    • if value diff > k, move l to next element
    • if value diff < k, move r to next element
  • return count

C++




/* A sorting based program to count pairs with difference k*/
#include <iostream>
#include <algorithm>
using namespace std;
  
/* Returns count of pairs with difference k in arr[] of size n. */
int countPairsWithDiffK(int arr[], int n, int k)
{
    int count = 0;
    sort(arr, arr+n);  // Sort array elements
 
    int l = 0;
    int r = 0;
    while(r < n)
    {
         if(arr[r] - arr[l] == k)
        {
              count++;
              l++;
              r++;
        }
         else if(arr[r] - arr[l] > k)
              l++;
         else // arr[r] - arr[l] < sum
              r++;
    }  
    return count;
}
 
// Driver program to test above function
int main()
{
    int arr[] =  {1, 5, 3, 4, 2};
    int n = sizeof(arr)/sizeof(arr[0]);
    int k = 3;
    cout << "Count of pairs with given diff is "
         << countPairsWithDiffK(arr, n, k);
    return 0;
}

Java




// A sorting based Java program to
// count pairs with difference k
import java.util.*;
 
class GFG {
 
/* Returns count of pairs with
difference k in arr[] of size n. */
static int countPairsWithDiffK(int arr[], int n,
                                          int k)
{
    int count = 0;
    Arrays.sort(arr); // Sort array elements
 
    int l = 0;
    int r = 0;
    while(r < n)
    {
        if(arr[r] - arr[l] == k)
        {
            count++;
            l++;
            r++;
        }
        else if(arr[r] - arr[l] > k)
            l++;
        else // arr[r] - arr[l] < sum
            r++;
    }
    return count;
}
 
// Driver program to test above function
public static void main(String[] args)
{
    int arr[] = {1, 5, 3, 4, 2};
    int n = arr.length;
    int k = 3;
    System.out.println("Count of pairs with given diff is " +
                        countPairsWithDiffK(arr, n, k));
}
}
 
// This code is contributed by Prerna Saini

Python3




# A sorting based program to
# count pairs with difference k
def countPairsWithDiffK(arr,n,k):
 
    count =0
     
    # Sort array elements
    arr.sort()
 
    l =0
    r=0
 
    while r<n:
        if arr[r]-arr[l]==k:
            count+=1
            l+=1
            r+=1
             
        # arr[r] - arr[l] < sum
        elif arr[r]-arr[l]>k:
            l+=1
        else:
            r+=1
    return count
 
# Driver code
if __name__=='__main__':
    arr = [1, 5, 3, 4, 2]
    n = len(arr)
    k = 3
    print("Count of pairs with given diff is ",
          countPairsWithDiffK(arr, n, k))
 
# This code is contributed by
# Shrikant13

C#




// A sorting based C# program to count
// pairs with difference k
using System;
 
class GFG {
 
    /* Returns count of pairs with
    difference k in arr[] of size n. */
    static int countPairsWithDiffK(int []arr,
                                int n, int k)
    {
        int count = 0;
         
        // Sort array elements
        Array.Sort(arr);
     
        int l = 0;
        int r = 0;
        while(r < n)
        {
            if(arr[r] - arr[l] == k)
            {
                count++;
                l++;
                r++;
            }
            else if(arr[r] - arr[l] > k)
                l++;
            else // arr[r] - arr[l] < sum
                r++;
        }
        return count;
    }
     
    // Driver program to test above function
    public static void Main()
    {
        int []arr = {1, 5, 3, 4, 2};
        int n = arr.Length;
        int k = 3;
        Console.Write("Count of pairs with "
                        + "given diff is " +
            countPairsWithDiffK(arr, n, k));
    }
}
 
// This code is contributed by nitin mittal.

PHP




<?php
// A sorting based program to count
// pairs with difference k
 
// Returns count of pairs with
// difference k in arr[] of size n.
function countPairsWithDiffK( $arr, $n, $k)
{
    $count = 0;
     
    // Sort array elements
    sort($arr);
 
    $l = 0;
    $r = 0;
    while($r < $n)
    {
        if($arr[$r] - $arr[$l] == $k)
        {
            $count++;
            $l++;
            $r++;
        }
        else if($arr[$r] - $arr[$l] > $k)
            $l++;
             
        // arr[r] - arr[l] < k
        else
            $r++;
    }
    return $count;
}
 
    // Driver Code
    $arr = array(1, 5, 3, 4, 2);
    $n =count($arr);
    $k = 3;
    echo "Count of pairs with given diff is "
        , countPairsWithDiffK($arr, $n, $k);
         
// This code is contributed by anuj_67,
?>

Javascript




<script>
 
// Javascript program to
// count pairs with difference k
 
/* Returns count of pairs with
difference k in arr[] of size n. */
function countPairsWithDiffK(arr, n, k)
{
    let count = 0;
    arr.sort(); // Sort array elements
  
    let l = 0;
    let r = 0;
    while(r < n)
    {
        if(arr[r] - arr[l] == k)
        {
            count++;
            l++;
            r++;
        }
        else if(arr[r] - arr[l] > k)
            l++;
        else // arr[r] - arr[l] < sum
            r++;
    }
    return count;
}
 
// Driver program
 
      let arr = [1, 5, 3, 4, 2];
    let n = arr.length;
    let k = 3;
    document.write("Count of pairs with given diff is " +
                        countPairsWithDiffK(arr, n, k));
       
</script>

Output:

Count of pairs with given diff is 2

Time Complexity: O(nlogn)

Method 6(Using Binary Search)(Works with duplicates in the array):

1) Initialize count as 0.

2) Sort all numbers in increasing order.  

4) Do following for each element arr[i]

  a) Binary Search for the first occurrence of arr[i] + k in the sub array arr[i+1, N-1], let this index be ‘X’.

  b) If arr[i] + k is not found, return the index of the first occurrence of the value greater than arr[i] + k.

  c) Repeat steps a and b to search for the first occurrence of arr[i] + k + 1, let this index be ‘Y’.

  d) Increment count with ‘Y – X’.

5) Return count. 

C++




#include <bits/stdc++.h>
using namespace std;
 
int BS(int arr[], int X, int low, int N)
{
    int high = N - 1;
    int ans = N;
    while (low <= high) {
        int mid = low + (high - low) / 2;
        if (arr[mid] >= X) {
            ans = mid;
            high = mid - 1;
        }
        else
            low = mid + 1;
    }
    return ans;
}
int countPairsWithDiffK(int arr[], int N, int k)
{
    int count = 0;
    sort(arr, arr + N);
    for (int i = 0; i < N; ++i) {
        int X = BS(arr, arr[i] + k, i + 1, N);
        if (X != N) {
            int Y = BS(arr, arr[i] + k + 1, i + 1, N);
            count += Y - X;
        }
    }
 
    return count;
}
int main()
{
    int arr[] = { 1, 3, 5, 8, 6, 4, 6 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 2;
    cout << "Count of pairs with given diff is "
         << countPairsWithDiffK(arr, n, k);
 
    return 0;
}
 
// This code is contributed by umadevi9616

Java




import java.io.*;
 
class GFG {
      static int BS(int[] arr, int X, int low)  {
        int high = arr.length - 1;
        int ans = arr.length;
        while(low <= high) {
            int mid = low + (high - low) / 2;
            if(arr[mid] >= X) {
                ans = mid;
                high = mid - 1;
            }
            else low = mid + 1;
        }
        return ans;
    }
      static int countPairsWithDiffK(int[] arr, int N, int k) {
        int count = 0;
        Arrays.sort(arr);
        for(int i = 0 ; i < N ; ++i) {
            int X = BS(arr, arr[i] + k, i + 1);
            if(X != N) {
                int Y = BS(arr, arr[i] + k + 1, i + 1);
                count += Y - X;
            }
        }
 
        return count;
    }
    public static void main (String[] args) {
        int arr[] = {1, 3, 5, 8, 6, 4, 6};
        int n = arr.length;
        int k = 2;
        System.out.println("Count of pairs with given diff is " +
                            countPairsWithDiffK(arr, n, k));
        }
}

C#




using System;
 
class GFG{
     
static int BS(int[] arr, int X, int low)
{
    int high = arr.Length - 1;
    int ans = arr.Length;
     
    while (low <= high)
    {
        int mid = low + (high - low) / 2;
        if (arr[mid] >= X)
        {
            ans = mid;
            high = mid - 1;
        }
        else low = mid + 1;
    }
    return ans;
}
 
static int countPairsWithDiffK(int[] arr, int N, int k)
{
    int count = 0;
    Array.Sort(arr);
     
    for(int i = 0 ; i < N ; ++i)
    {
        int X = BS(arr, arr[i] + k, i + 1);
         
        if (X != N)
        {
            int Y = BS(arr, arr[i] + k + 1, i + 1);
            count += Y - X;
        }
    }
    return count;
}
 
// Driver code
public static void Main(string[] args)
{
    int []arr = { 1, 3, 5, 8, 6, 4, 6 };
    int n = arr.Length;
    int k = 2;
     
    Console.WriteLine("Count of pairs with given diff is " +
                      countPairsWithDiffK(arr, n, k));
}
}
 
// This code is contributed by ukasp

Javascript




<script>
 
function BS(arr, X, low)
{
    let high = arr.length - 1;
    let ans = arr.length;
     
    while(low <= high)
    {
        let mid = low + (high - low) / 2;
        if (arr[mid] >= X)
        {
            ans = mid;
            high = mid - 1;
        }
        else low = mid + 1;
    }
    return ans;
}
 
function countPairsWithDiffK(arr, N, k)
{
    let count = 2;
    arr.sort();
     
    for(let i = 0 ; i < N ; ++i)
    {
        let X = BS(arr, arr[i] + k, i + 1);
        if (X != N)
        {
            let Y = BS(arr, arr[i] + k + 1,
                                 i + 1);
            count += Y - X;
        }
    }
    return count;
}
 
// Driver code
let arr = [ 1, 3, 5, 8, 6, 4, 6 ];
let n = arr.length;
let k = 3;
 
document.write("Count of pairs with given diff is " +
               countPairsWithDiffK(arr, n, k));
                
// This code is contributed by shivanisinghss2110  
 
</script>

Time Complexity: O(N * log(N))

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!