Skip to content
Related Articles

Related Articles

Improve Article
Count pairs in array whose sum is divisible by 4
  • Difficulty Level : Easy
  • Last Updated : 02 Jul, 2018

Given a array if ‘n’ positive integers. Count number of pairs of integers in the array that have the sum divisible by 4.
Examples :

Input: {2, 2, 1, 7, 5}
Output: 3

Explanation
Only three pairs are possible whose sum
is divisible by '4' i.e., (2, 2), 
(1, 7) and (7, 5)

Input: {2, 2, 3, 5, 6}
Output: 4

Naive approach is to iterate through every pair of array bu using two nested for loops and count those pairs whose sum is divisible by ‘4’. Time complexity of this approach is O(n2).

Efficient approach is to use Hashing technique. There are only three condition that can arise whose sum is divisible by ‘4’ i.e,

  1. If both are divisible by 4.
  2. If one of them is equal to 1 modulo 4 and other is 3 modulo 4. For instance, (1, 3), (5, 7), (5, 11).
  3. If both of them is equal to 2 modulo 4 i.e., (2, 2), (2, 6), (6, 10)
    Store all modulo in freq[] array such that freq[i] = number of array elements that are equal to i modulo 4.
    Thus answer =>
    \implies \displaystyle {{freq[0]} \choose 2} + {freq[2] \choose 2} + freq[1] \cdot freq[3]
    
    \implies \displaystyle \frac{freq_0 (freq_0-1)}{2} +\frac{freq_2 (freq_2-1)}{2} +         freq_1 \cdot freq_3 
    
    

    C++




    // C++ Program to count pairs 
    // whose sum divisible by '4'
    #include <bits/stdc++.h>
    using namespace std;
      
    // Program to count pairs whose sum divisible
    // by '4'
    int count4Divisibiles(int arr[], int n)
    {
        // Create a frequency array to count 
        // occurrences of all remainders when 
        // divided by 4
        int freq[4] = {0, 0, 0, 0};
      
        // Count occurrences of all remainders
        for (int i = 0; i < n; i++)
            ++freq[arr[i] % 4];
      
        // If both pairs are divisible by '4'
        int ans = freq[0] * (freq[0] - 1) / 2;
      
        // If both pairs are 2 modulo 4
        ans += freq[2] * (freq[2] - 1) / 2;
      
        // If one of them is equal
        // to 1 modulo 4 and the
        // other is equal to 3 
        // modulo 4
        ans += freq[1] * freq[3];
      
        return ans;
    }
      
    // Driver code
    int main()
    {
      
        int arr[] = { 2, 2, 1, 7, 5 };
        int n = sizeof(arr) / sizeof(arr[0]);
      
        cout << count4Divisibiles(arr, n);
      
        return 0;
    }

    Java




    // Java program to count pairs 
    // whose sum divisible by '4'
    import java.util.*;
      
    class Count{
        public static int count4Divisibiles(int arr[] , 
                                                 int n )
        {
            // Create a frequency array to count 
            // occurrences of all remainders when 
            // divided by 4
            int freq[] = {0, 0, 0, 0};
            int i = 0;
            int ans;
              
            // Count occurrences of all remainders
            for (i = 0; i < n; i++)
                    ++freq[arr[i] % 4];
              
            //If both pairs are divisible by '4'
            ans = freq[0] * (freq[0] - 1) / 2;
          
            // If both pairs are 2 modulo 4
            ans += freq[2] * (freq[2] - 1) / 2;
          
            // If one of them is equal
            // to 1 modulo 4 and the
            // other is equal to 3 
            // modulo 4
            ans += freq[1] * freq[3];
          
            return (ans);
        }
        public static void main(String[] args)
        {
            int arr[] = {2, 2, 1, 7, 5};
            int n = 5;
            System.out.print(count4Divisibiles(arr, n));
        }
    }
      
    // This code is contributed by rishabh_jain

    Python3




    # Python3 code to count pairs whose 
    # sum is divisible by '4'
      
    # Function to count pairs whose 
    # sum is divisible by '4'
    def count4Divisibiles( arr , n ):
          
        # Create a frequency array to count 
        # occurrences of all remainders when 
        # divided by 4
        freq = [0, 0, 0, 0]
          
        # Count occurrences of all remainders
        for i in range(n):
            freq[arr[i] % 4]+=1
              
        #If both pairs are divisible by '4'
        ans = freq[0] * (freq[0] - 1) / 2
          
        # If both pairs are 2 modulo 4
        ans += freq[2] * (freq[2] - 1) / 2
          
        # If one of them is equal
        # to 1 modulo 4 and the
        # other is equal to 3 
        # modulo 4
        ans += freq[1] * freq[3]
          
        return int(ans)
      
    # Driver code
    arr = [2, 2, 1, 7, 5]
    n = len(arr)
    print(count4Divisibiles(arr, n))
      
    # This code is contributed by "Sharad_Bhardwaj".

    C#




    // C# program to count pairs 
    // whose sum divisible by '4'
    using System;
      
    class Count{
        public static int count4Divisibiles(int []arr , 
                                                int n )
        {
            // Create a frequency array to count 
            // occurrences of all remainders when 
            // divided by 4
            int []freq = {0, 0, 0, 0};
            int i = 0;
            int ans;
              
            // Count occurrences of all remainders
            for (i = 0; i < n; i++)
                ++freq[arr[i] % 4];
              
            //If both pairs are divisible by '4'
            ans = freq[0] * (freq[0] - 1) / 2;
          
            // If both pairs are 2 modulo 4
            ans += freq[2] * (freq[2] - 1) / 2;
          
            // If one of them is equal
            // to 1 modulo 4 and the
            // other is equal to 3 
            // modulo 4
            ans += freq[1] * freq[3];
          
            return (ans);
        }
          
        // Driver code
        public static void Main()
        {
            int []arr = {2, 2, 1, 7, 5};
            int n = 5;
            Console.WriteLine(count4Divisibiles(arr, n));
        }
    }
      
    // This code is contributed by vt_m

    PHP




    <?php
    // PHP Program to count pairs 
    // whose sum divisible by '4'
      
    // Program to count pairs whose 
    // sum divisible by '4'
    function count4Divisibiles($arr, $n)
    {
        // Create a frequency array to 
        // count occurrences of all 
        // remainders when divided by 4
        $freq = array(0, 0, 0, 0);
      
        // Count occurrences 
        // of all remainders
        for ( $i = 0; $i < $n; $i++)
            ++$freq[$arr[$i] % 4];
      
        // If both pairs are
        // divisible by '4'
        $ans = $freq[0] *
              ($freq[0] - 1) / 2;
      
        // If both pairs are
        // 2 modulo 4
        $ans += $freq[2] * 
               ($freq[2] - 1) / 2;
      
        // If one of them is equal
        // to 1 modulo 4 and the
        // other is equal to 3 
        // modulo 4
        $ans += $freq[1] * $freq[3];
      
        return $ans;
    }
      
    // Driver code
    $arr = array(2, 2, 1, 7, 5);
    $n = sizeof($arr) ;
      
    echo count4Divisibiles($arr, $n);
      
    // This code is contributed by ajit
    ?>


    Output :



     3
    

    Time complexity: O(n)
    Auxiliary space: O(1)

    Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

    In case you wish to attend live classes with industry experts, please refer DSA Live Classes




    My Personal Notes arrow_drop_up
Recommended Articles
Page :