Count pairs (a, b) whose sum of cubes is N (a^3 + b^3 = N)

Given N, count all ‘a’ and ‘b’ that satisfy the condition a^3 + b^3 = N.
Examples:

Input : N = 9
Output : 2
1^3 + 2^3 = 9
2^3 + 1^3 = 9

Input : N = 28
Output : 2
 1^3 + 3^3 = 28
 3^3 + 1^3 = 28

Note:- (a, b) and (b, a) are to be considered as two different pairs.
Asked in : Adobe

Implementation:
Travers numbers from 1 to cube root of N. 
  a) Subtract cube of current number from 
    N and check if their difference is a 
    perfect cube or not.
      i) If perfect cube then increment count.

2- Return count.

Below is the implementation of above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to count pairs whose sum
// cubes is N
#include<bits/stdc++.h>
using namespace std;
  
// Function to count the pairs satisfying
// a ^ 3 + b ^ 3 = N
int countPairs(int N)
{
    int count = 0;
  
    // Check for each number 1 to cbrt(N)
    for (int i = 1; i <= cbrt(N); i++)
    {
        // Store cube of a number
        int cb = i*i*i;
  
        // Subtract the cube from given N
        int diff = N - cb;
  
        // Check if the difference is also
        // a perfect cube
        int cbrtDiff = cbrt(diff);
  
        // If yes, then increment count
        if (cbrtDiff*cbrtDiff*cbrtDiff == diff)
            count++;
    }
  
    // Return count
    return count;
}
  
// Driver program
int main()
{
    // Loop to Count no. of pairs satisfying
    // a ^ 3 + b ^ 3 = i for N = 1 to 10
    for (int i = 1; i<= 10; i++)
        cout << "For n = " << i << ", "
             << countPairs(i) <<" pair exists\n";
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to count pairs whose sum
// cubes is N
  
class Test
{
    // method to count the pairs satisfying
    // a ^ 3 + b ^ 3 = N
    static int countPairs(int N)
    {
        int count = 0;
       
        // Check for each number 1 to cbrt(N)
        for (int i = 1; i <= Math.cbrt(N); i++)
        {
            // Store cube of a number
            int cb = i*i*i;
       
            // Subtract the cube from given N
            int diff = N - cb;
       
            // Check if the difference is also
            // a perfect cube
            int cbrtDiff = (int) Math.cbrt(diff);
       
            // If yes, then increment count
            if (cbrtDiff*cbrtDiff*cbrtDiff == diff)
                count++;
        }
       
        // Return count
        return count;
    }
      
    // Driver method
    public static void main(String args[]) 
    {
        // Loop to Count no. of pairs satisfying
        // a ^ 3 + b ^ 3 = i for N = 1 to 10
        for (int i = 1; i<= 10; i++)
            System.out.println("For n = " + i + ", " +
                     + countPairs(i) + " pair exists");
    }
}

chevron_right


Python 3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to count pairs 
# whose sum cubes is N
import math 
  
# Function to count the pairs 
# satisfying a ^ 3 + b ^ 3 = N
def countPairs(N):
  
    count = 0
  
    # Check for each number 1
    # to cbrt(N)
    for i in range(1, int(math.pow(N, 1/3) + 1)):
      
        # Store cube of a number
        cb = i * i * i
  
        # Subtract the cube from given N
        diff = N - cb
  
        # Check if the difference is also
        # a perfect cube
        cbrtDiff = int(math.pow(diff, 1/3))
  
        # If yes, then increment count
        if (cbrtDiff * cbrtDiff * cbrtDiff == diff):
            count += 1
      
    # Return count
    return count
  
  
# Driver program
  
# Loop to Count no. of pairs satisfying
# a ^ 3 + b ^ 3 = i for N = 1 to 10
for i in range(1, 11):
    print('For n = ', i, ', ', countPairs(i),
                                ' pair exists')
  
  
# This code is contributed by Smitha.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to count pairs whose sum
// cubes is N
   
using System;
class Test
{
    // method to count the pairs satisfying
    // a ^ 3 + b ^ 3 = N
    static int countPairs(int N)
    {
        int count = 0;
        
        // Check for each number 1 to cbrt(N)
        for (int i = 1; i <= Math.Pow(N,(1.0/3.0)); i++)
        {
            // Store cube of a number
            int cb = i*i*i;
        
            // Subtract the cube from given N
            int diff = N - cb;
        
            // Check if the difference is also
            // a perfect cube
            int cbrtDiff = (int) Math.Pow(diff,(1.0/3.0));
        
            // If yes, then increment count
            if (cbrtDiff*cbrtDiff*cbrtDiff == diff)
                count++;
        }
        
        // Return count
        return count;
    }
       
    // Driver method
    public static void Main() 
    {
        // Loop to Count no. of pairs satisfying
        // a ^ 3 + b ^ 3 = i for N = 1 to 10
        for (int i = 1; i<= 10; i++)
            Console.Write("For n = " + i + ", " +
                     + countPairs(i) + " pair exists"+"\n");
    }
}

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to count pairs 
// whose sum cubes is N 
  
// Function to count the pairs 
// satisfying a ^ 3 + b ^ 3 = N 
function countPairs($N
    $count = 0; 
  
    // Check for each number 
    // 1 to cbrt(N) 
    for ($i = 1; 
         $i <= (int)pow($N, 1 / 3); $i++) 
    
        // Store cube of a number 
        $cb = $i * $i * $i
  
        // Subtract the cube from
        // given N 
        $diff = ($N - $cb); 
  
        // Check if the difference is 
        // also a perfect cube 
        $cbrtDiff = (int)pow($diff, 1 / 3); 
  
        // If yes, then increment count 
        if ($cbrtDiff * $cbrtDiff
                        $cbrtDiff == $diff
            $count++; 
    
  
    // Return count 
    return $count
  
// Driver Code 
  
// Loop to Count no. of pairs 
// satisfying a ^ 3 + b ^ 3 = i 
// for N = 1 to 10 
for ($i = 1; $i<= 10; $i++) 
    echo "For n = " , $i , ", ",
          countPairs($i) ," pair exists\n"
  
// This code is contributed by jit_t
?>

chevron_right



Output:

For n= 1, 1 pair exists
For n= 2, 1 pair exists
For n= 3, 0 pair exists
For n= 4, 0 pair exists
For n= 5, 0 pair exists
For n= 6, 0 pair exists
For n= 7, 0 pair exists
For n= 8, 1 pair exists
For n= 9, 2 pair exists
For n= 10, 0 pair exists

Refrence: https://www.careercup.com/question?id=5954491572551680

This article is contributed by Sahil Chhabra. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.