Skip to content
Related Articles
Count pair of strings whose concatenation of substrings form a palindrome
• Difficulty Level : Basic
• Last Updated : 25 May, 2021

Given an array of strings arr[], the task is to count the pair of strings whose concatenation of substrings form a palindrome.
Examples:

Input: arr[] = {“gfg”, “gfg”}
Output:
Explanation:
One possible way of choosing s1 and s2 is s1 = “gf”, s2 = “g” such that s1 + s2 i.e “gfg” is a palindrome.
Input: arr[] = {“abc”, B = “def”}
Output:

Approach: The key observation in the problem is if both strings have at least one common character let’s say ‘c’ then we can form a palindromic string. Therefore, check for all the pairs in the array that there is a common character in the string or not.
Below is the implementation of the above approach:

## C++

 `// C++ implementation to count of``// palindromic Palindromic Substrings``// that can be formed from the array` `#include``using` `namespace` `std;` `// Function to to check if possible``// to make palindromic substring``bool` `isPossible(string A, string B)``{` `        ``sort(B.begin(),B.end());``        ``int` `c=0;``        ``for``(``int` `i = 0; i < (``int``)A.size(); i++)``            ``if``(binary_search(B.begin(),B.end(),A[i]))``                ``return` `true``;``    ``return` `false``;``}` `// Function to count of Palindromic Substrings``// that can be formed from the array.``int` `countPalindromicSubstrings(string s[], ``int` `n)``{``    ``// variable to store count``    ``int` `count = 0;` `    ``// Traverse through all the pairs``    ``// in the array``    ``for``(``int` `i = 0; i < n; i++){``        ``for``(``int` `j = i + 1; j < n; j++)``            ``if``(isPossible(s[i], s[j]))``                ``count++;``    ``}``    ``return` `count;``}` `// Driver Code``int` `main()``{``    ``string arr[] = { ``"gfg"``, ``"gfg"` `};``    ``int` `n = 2;``    ``cout << countPalindromicSubstrings(arr, n);``    ``return` `0;``}`

## Java

 `// Java implementation to count of``// palindromic Palindromic SubStrings``// that can be formed from the array``import` `java.util.*;` `class` `GFG{` `// Function to to check if possible``// to make palindromic subString``static` `boolean` `isPossible(String A, String B)``{``    ``B = sortString(B);``    ` `    ``for``(``int` `i = ``0``; i < (``int``)A.length(); i++)``        ``if``(Arrays.binarySearch(B.toCharArray(),``                               ``A.charAt(i)) > -``1``)``           ``return` `true``;``            ` `    ``return` `false``;``}` `// Function to count of Palindromic SubStrings``// that can be formed from the array.``static` `int` `countPalindromicSubStrings(String s[],``                                      ``int` `n)``{``    ` `    ``// Variable to store count``    ``int` `count = ``0``;` `    ``// Traverse through all the pairs``    ``// in the array``    ``for``(``int` `i = ``0``; i < n; i++)``    ``{``        ``for``(``int` `j = i + ``1``; j < n; j++)``            ``if``(isPossible(s[i], s[j]))``                ``count++;``    ``}``    ``return` `count;``}` `static` `String sortString(String inputString)``{``    ` `    ``// Convert input string to char array``    ``char` `tempArray[] = inputString.toCharArray();``        ` `    ``// Sort tempArray``    ``Arrays.sort(tempArray);``        ` `    ``// Return new sorted string``    ``return` `new` `String(tempArray);``}` `// Driver Code``public` `static` `void` `main(String[] args)``{``    ``String arr[] = { ``"gfg"``, ``"gfg"` `};``    ``int` `n = ``2``;``    ` `    ``System.out.print(countPalindromicSubStrings(arr, n));``}``}` `// This code is contributed by Rajput-Ji`

## Python3

 `# Python3 implementation to count of``# palindromic Palindromic Substrings``# that can be formed from the array` `# Function to to check if possible``# to make palindromic substring``def` `isPossible(A, B):``  ` `    ``B ``=` `sorted``(B)``    ``c ``=` `0``    ` `    ``for` `i ``in` `range``(``len``(A)):``        ``if` `A[i] ``in` `B:``            ``return` `True``    ``return` `False` `# Function to count of Palindromic``# Substrings that can be formed``# from the array.``def` `countPalindromicSubstrings(s, n):` `    ``# Variable to store count``    ``count ``=` `0` `    ``# Traverse through all``    ``# Substrings in the array``    ``for` `i ``in` `range``(n):``        ``for` `j ``in` `range``(i ``+` `1``, n):``            ``if``(isPossible(s[i], s[j])):``                ``count ``+``=` `1``    ``return` `count` `# Driver Code``arr ``=` `[``"gfg"``, ``"gfg"``]``n ``=` `2``print``(countPalindromicSubstrings(arr, n))` `# This code is contributed by avanitrachhadiya2155`

## C#

 `// C# implementation to count of``// palindromic Palindromic SubStrings``// that can be formed from the array``using` `System;``class` `GFG{` `// Function to to check if possible``// to make palindromic subString``static` `bool` `isPossible(String A, String B)``{``    ``B = sortString(B);``    ` `    ``for``(``int` `i = 0; i < (``int``)A.Length; i++)``        ``if``(Array.BinarySearch(B.ToCharArray(),``                               ``A[i]) > -1)``           ``return` `true``;``            ` `    ``return` `false``;``}` `// Function to count of Palindromic SubStrings``// that can be formed from the array.``static` `int` `countPalindromicSubStrings(String []s,``                                      ``int` `n)``{``    ` `    ``// Variable to store count``    ``int` `count = 0;` `    ``// Traverse through all the pairs``    ``// in the array``    ``for``(``int` `i = 0; i < n; i++)``    ``{``        ``for``(``int` `j = i + 1; j < n; j++)``            ``if``(isPossible(s[i], s[j]))``                ``count++;``    ``}``    ``return` `count;``}` `static` `String sortString(String inputString)``{``    ` `    ``// Convert input string to char array``    ``char` `[]tempArray = inputString.ToCharArray();``        ` `    ``// Sort tempArray``    ``Array.Sort(tempArray);``        ` `    ``// Return new sorted string``    ``return` `new` `String(tempArray);``}` `// Driver Code``public` `static` `void` `Main(String[] args)``{``    ``String []arr = { ``"gfg"``, ``"gfg"` `};``    ``int` `n = 2;``    ` `    ``Console.Write(countPalindromicSubStrings(arr, n));``}``}` `// This code is contributed by Rajput-Ji`

## Javascript

 ``
Output:
`1`

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live

My Personal Notes arrow_drop_up