Count pair of strings whose concatenation of substrings form a palindrome

Given an array of strings arr[], the task is to count the pair of strings whose concatenation of substrings form a palindrome.
Examples: 

Input: arr[] = {“gfg”, “gfg”} 
Output:
Explanation: 
One possible way of choosing s1 and s2 is s1 = “gf”, s2 = “g” such that s1 + s2 i.e “gfg” is a palindrome.
Input: arr[] = {“abc”, B = “def”} 
Output:

Approach: The key observation in the problem is if both strings have at least one common character let’s say ‘c’ then we can form a palindromic string. Therefore, check for all the pairs in the array that there is a common character in the string or not.
Below is the implementation of the above approach:
 

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation to count of 
// palindromic Palindromic Substrings
// that can be formed from the array
  
#include<bits/stdc++.h> 
using namespace std; 
  
// Function to to check if possible
// to make palindromic substring
bool isPossible(string A, string B) 
  
        sort(B.begin(),B.end());
        int c=0;
        for(int i = 0; i < (int)A.size(); i++)
            if(binary_search(B.begin(),B.end(),A[i]))
                return true;
    return false;
  
// Function to count of Palindromic Substrings
// that can be formed from the array.
int countPalindromicSubstrings(string s[], int n)
{
    // variable to store count
    int count = 0;
  
    // Traverse through all the pairs
    // in the array
    for(int i = 0; i < n; i++){
        for(int j = i + 1; j < n; j++)
            if(isPossible(s[i], s[j]))
                count++;
    }
    return count;
}
  
// Driver Code 
int main() 
    string arr[] = { "gfg", "gfg" }; 
    int n = 2;
    cout << countPalindromicSubstrings(arr, n);
    return 0; 

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation to count of 
// palindromic Palindromic SubStrings
// that can be formed from the array
import java.util.*;
  
class GFG{ 
  
// Function to to check if possible
// to make palindromic subString
static boolean isPossible(String A, String B) 
    B = sortString(B);
      
    for(int i = 0; i < (int)A.length(); i++)
        if(Arrays.binarySearch(B.toCharArray(), 
                               A.charAt(i)) > -1)
           return true;
              
    return false;
  
// Function to count of Palindromic SubStrings
// that can be formed from the array.
static int countPalindromicSubStrings(String s[],
                                      int n)
{
      
    // Variable to store count
    int count = 0;
  
    // Traverse through all the pairs
    // in the array
    for(int i = 0; i < n; i++)
    {
        for(int j = i + 1; j < n; j++)
            if(isPossible(s[i], s[j]))
                count++;
    }
    return count;
}
  
static String sortString(String inputString) 
      
    // Convert input string to char array 
    char tempArray[] = inputString.toCharArray(); 
          
    // Sort tempArray 
    Arrays.sort(tempArray); 
          
    // Return new sorted string 
    return new String(tempArray); 
  
// Driver Code 
public static void main(String[] args) 
    String arr[] = { "gfg", "gfg" }; 
    int n = 2;
      
    System.out.print(countPalindromicSubStrings(arr, n));
  
// This code is contributed by Rajput-Ji

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation to count of 
# palindromic Palindromic Substrings
# that can be formed from the array
  
# Function to to check if possible
# to make palindromic substring
def isPossible(A, B):
    
    B = sorted(B)
    c = 0
      
    for i in range(len(A)):
        if A[i] in B:
            return True
    return False
  
# Function to count of Palindromic 
# Substrings that can be formed 
# from the array.
def countPalindromicSubstrings(s, n):
  
    # Variable to store count
    count = 0
  
    # Traverse through all 
    # Substrings in the array
    for i in range(n):
        for j in range(i + 1, n):
            if(isPossible(s[i], s[j])):
                count += 1
    return count
  
# Driver Code 
arr = ["gfg", "gfg"]
n = 2
print(countPalindromicSubstrings(arr, n))
  
# This code is contributed by avanitrachhadiya2155

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation to count of 
// palindromic Palindromic SubStrings
// that can be formed from the array
using System;
class GFG{ 
  
// Function to to check if possible
// to make palindromic subString
static bool isPossible(String A, String B) 
    B = sortString(B);
      
    for(int i = 0; i < (int)A.Length; i++)
        if(Array.BinarySearch(B.ToCharArray(), 
                               A[i]) > -1)
           return true;
              
    return false;
  
// Function to count of Palindromic SubStrings
// that can be formed from the array.
static int countPalindromicSubStrings(String []s,
                                      int n)
{
      
    // Variable to store count
    int count = 0;
  
    // Traverse through all the pairs
    // in the array
    for(int i = 0; i < n; i++)
    {
        for(int j = i + 1; j < n; j++)
            if(isPossible(s[i], s[j]))
                count++;
    }
    return count;
}
  
static String sortString(String inputString) 
      
    // Convert input string to char array 
    char []tempArray = inputString.ToCharArray(); 
          
    // Sort tempArray 
    Array.Sort(tempArray); 
          
    // Return new sorted string 
    return new String(tempArray); 
  
// Driver Code 
public static void Main(String[] args) 
    String []arr = { "gfg", "gfg" }; 
    int n = 2;
      
    Console.Write(countPalindromicSubStrings(arr, n));
  
// This code is contributed by Rajput-Ji

chevron_right


Output: 

1

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.