# Count of different ways to express N as the sum of 1, 3 and 4

Given N, count the number of ways to express N as sum of 1, 3 and 4.

Examples:

```Input :  N = 4
Output : 4
Explanation: 1+1+1+1
1+3
3+1
4

Input : N = 5
Output : 6
Explanation: 1 + 1 + 1 + 1 + 1
1 + 4
4 + 1
1 + 1 + 3
1 + 3 + 1
3 + 1 + 1
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach : Divide the problem into sub-problems for solving it. Let DP[n] be the be the number of ways to write N as the sum of 1, 3, and 4. Consider one possible solution with n = x1 + x2 + x3 + … xn. If the last number is 1, then sum of the remaining numbers is n-1. So the number that ends with 1 is equal to DP[n-1]. Taking other cases into account where the last number is 3 and 4. The final recurrence would be:

```DPn = DPn-1 + DPn-3 + DPn-4
```
```Base case :
DP = DP = DP = 1 and DP = 2
```

## C++

 `// CPP program to illustrate the number of ` `// ways to represent N as sum of 1, 3 and 4. ` `#include ` `using` `namespace` `std; ` ` `  `// function to count the number of ` `// ways to represent n as sum of 1, 3 and 4 ` `int` `countWays(``int` `n) ` `{ ` `    ``int` `DP[n + 1]; ` ` `  `    ``// base cases ` `    ``DP = DP = DP = 1; ` `    ``DP = 2; ` ` `  `    ``// iterate for all values from 4 to n ` `    ``for` `(``int` `i = 4; i <= n; i++)  ` `        ``DP[i] = DP[i - 1] + DP[i - 3] + DP[i - 4]; ` `     `  `    ``return` `DP[n]; ` `} ` ` `  `// driver code ` `int` `main() ` `{ ` `    ``int` `n = 10; ` `    ``cout << countWays(n); ` `    ``return` `0; ` `} `

## Java

 `// Java program to illustrate  ` `// the number of ways to represent  ` `// N as sum of 1, 3 and 4. ` ` `  `class` `GFG { ` ` `  `    ``// Function to count the  ` `    ``// number of ways to represent  ` `    ``// n as sum of 1, 3 and 4 ` `    ``static` `int` `countWays(``int` `n) ` `    ``{ ` `        ``int` `DP[] = ``new` `int``[n + ``1``]; ` ` `  `        ``// base cases ` `        ``DP[``0``] = DP[``1``] = DP[``2``] = ``1``; ` `        ``DP[``3``] = ``2``; ` ` `  `        ``// iterate for all values from 4 to n ` `        ``for` `(``int` `i = ``4``; i <= n; i++) ` `            ``DP[i] = DP[i - ``1``] + DP[i - ``3``]  ` `                    ``+ DP[i - ``4``]; ` ` `  `        ``return` `DP[n]; ` `    ``} ` ` `  `    ``// driver code ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` `        ``int` `n = ``10``; ` `        ``System.out.println(countWays(n)); ` `    ``} ` `} ` ` `  `// This code is contributed  ` `// by prerna saini. `

## Python3

 `# Python program to illustrate the number of ` `# ways to represent N as sum of 1, 3 and 4. ` ` `  `# Function to count the number of ` `# ways to represent n as sum of 1, 3 and 4 ` `def` `countWays(n): ` ` `  `    ``DP ``=` `[``0` `for` `i ``in` `range``(``0``, n ``+` `1``)] ` `     `  `    ``# base cases ` `    ``DP[``0``] ``=` `DP[``1``] ``=` `DP[``2``] ``=` `1` `    ``DP[``3``] ``=` `2` ` `  `    ``# Iterate for all values from 4 to n ` `    ``for` `i ``in` `range``(``4``, n ``+` `1``): ` `        ``DP[i] ``=` `DP[i ``-` `1``] ``+` `DP[i ``-` `3``] ``+` `DP[i ``-` `4``] ` `     `  `    ``return` `DP[n] ` ` `  `     `  `# Driver code  ` `n ``=` `10` `print` `(countWays(n)) ` ` `  `# This code is contributed by Gitanjali. `

## C#

 `// C# program to illustrate  ` `// the number of ways to represent  ` `// N as sum of 1, 3 and 4. ` `using` `System; ` ` `  `class` `GFG { ` ` `  `    ``// Function to count the  ` `    ``// number of ways to represent  ` `    ``// n as sum of 1, 3 and 4 ` `    ``static` `int` `countWays(``int` `n) ` `    ``{ ` `        ``int` `[]DP = ``new` `int``[n + 1]; ` ` `  `        ``// base cases ` `        ``DP = DP = DP = 1; ` `        ``DP = 2; ` ` `  `        ``// iterate for all values from 4 to n ` `        ``for` `(``int` `i = 4; i <= n; i++) ` `            ``DP[i] = DP[i - 1] + DP[i - 3]  ` `                    ``+ DP[i - 4]; ` ` `  `        ``return` `DP[n]; ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``int` `n = 10; ` `        ``Console.WriteLine(countWays(n)); ` `    ``} ` `} ` ` `  `// This code is contributed  ` `// by vt_m. `

## PHP

 ` `

Output:

```64
```

Time Complexity : O(n)
Auxiliary Space : O(n)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Striver(underscore)79 at Codechef and codeforces D

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : Sam007