Count of ways to select K consecutive empty cells from a given Matrix

Given a binary matrix V[][] of dimensions N * M, wherein each cell is either empty or blocked marked by a 0 and 1 respectively, the task is to count the number of ways to select K consecutive empty cells from the same row or column. 
Examples: 

Input: V[][] = {{1, 1, 0}, {0, 0, 0}}, K = 2 
Output:
Explanation: 
Considering 1-based indexing, 2 consecutive empty cells can be selected in the following ways: 
[(1, 3), (2, 3)], [(2, 1), (2, 2)], [(2, 2), (2, 3)]
Input: V[][] = {{1, 1, 0}, {0, 0, 0}, {0, 0, 0}}, K = 1 
Output:
Explanation: 
It is possible to select all the cells since every cell is empty. 
 

Approach: 
The idea is to traverse the matrix row-wise and for each row, count the total number of empty consecutive cells. 
Follow the steps below to solve the problem:  

Below is the implementation of the above approach:
 

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find no of ways
// to select K consecutive empty
// cells from a row or column
#include <bits/stdc++.h>
using namespace std;
 
// Function to Traverse
// the matrix row wise
int rowWise(char* v, int n,
            int m, int k)
{
    // Initialize ans
    int ans = 0;
 
    // Traverse row wise
    for (int i = 0; i < n; i++) {
 
        // Initialize no of
        // consecutive empty
        // cells
        int countcons = 0;
 
        for (int j = 0; j < m; j++) {
 
            // Check if blocked cell is
            // encountered then reset
            // countcons  to 0
            if (*(v + i * m + j) == '1') {
                countcons = 0;
            }
 
            // Check if empty cell is
            // encountered, then
            // increment countcons
            else {
                countcons++;
            }
 
            // Check if number of empty
            // consecutive cells
            // is greater or equal
            // to K, increment the ans
            if (countcons >= k) {
                ans++;
            }
        }
    }
 
    // Return the count
    return ans;
}
 
// Function to Traverse the
// matrix column wise
int colWise(char* v, int n,
            int m, int k)
{
    // Initialize ans
    int ans = 0;
 
    // Traverse column wise
    for (int i = 0; i < m; i++) {
 
        // Initialize no of
        // consecutive empty cells
        int countcons = 0;
 
        for (int j = 0; j < n; j++) {
 
            // Check if blocked cell is
            // encountered then reset
            // countcons  to 0
            if (*(v + j * n + i) == '1') {
                countcons = 0;
            }
 
            // Check if empty cell is
            // encountered, increment
            // countcons
            else {
                countcons++;
            }
 
            // Check if number of empty
            // consecutive cells
            // is greater than or equal
            // to K, increment the ans
            if (countcons >= k) {
                ans++;
            }
        }
    }
 
    // Return the count
    return ans;
}
 
// Driver Code
int main()
{
 
    int n = 3, m = 3, k = 1;
 
    char v[n][m] = { '0', '0', '0',
                     '0', '0', '0',
                     '0', '0', '0' };
 
    // If k = 1 only traverse row wise
    if (k == 1) {
        cout << rowWise(v[0], n, m, k);
    }
 
    // Traverse both row and column wise
    else {
        cout << colWise(v[0], n, m, k)
                    + rowWise(v[0], n,
                              m, k);
    }
 
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find no of ways
// to select K consecutive empty
// cells from a row or column
import java.util.*;
 
class GFG{
 
// Function to Traverse
// the matrix row wise
static int rowWise(char [][]v, int n,
                        int m, int k)
{
     
    // Initialize ans
    int ans = 0;
 
    // Traverse row wise
    for(int i = 0; i < n; i++)
    {
 
        // Initialize no of
        // consecutive empty
        // cells
        int countcons = 0;
 
        for(int j = 0; j < m; j++)
        {
 
            // Check if blocked cell is
            // encountered then reset
            // countcons to 0
            if (v[i][j] == '1')
            {
                countcons = 0;
            }
 
            // Check if empty cell is
            // encountered, then
            // increment countcons
            else
            {
                countcons++;
            }
 
            // Check if number of empty
            // consecutive cells
            // is greater or equal
            // to K, increment the ans
            if (countcons >= k)
            {
                ans++;
            }
        }
    }
 
    // Return the count
    return ans;
}
 
// Function to Traverse the
// matrix column wise
static int colWise(char [][]v, int n,
                        int m, int k)
{
     
    // Initialize ans
    int ans = 0;
 
    // Traverse column wise
    for(int i = 0; i < m; i++)
    {
 
        // Initialize no of
        // consecutive empty cells
        int countcons = 0;
 
        for(int j = 0; j < n; j++)
        {
             
            // Check if blocked cell is
            // encountered then reset
            // countcons to 0
            if (v[j][i] == '1')
            {
                countcons = 0;
            }
 
            // Check if empty cell is
            // encountered, increment
            // countcons
            else
            {
                countcons++;
            }
 
            // Check if number of empty
            // consecutive cells
            // is greater than or equal
            // to K, increment the ans
            if (countcons >= k)
            {
                ans++;
            }
        }
    }
 
    // Return the count
    return ans;
}
 
// Driver Code
public static void main(String[] args)
{
    int n = 3, m = 3, k = 1;
 
    char v[][] = { { '0', '0', '0' },
                   { '0', '0', '0' },
                   { '0', '0', '0' } };
 
    // If k = 1 only traverse row wise
    if (k == 1)
    {
        System.out.print(rowWise(v, n, m, k));
    }
 
    // Traverse both row and column wise
    else
    {
        System.out.print(colWise(v, n, m, k) +
                         rowWise(v, n, m, k));
    }
}
}
 
// This code is contributed by amal kumar choubey
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to find no of ways
# to select K consecutive empty
# cells from a row or column
 
# Function to Traverse
# the matrix row wise
def rowWise(v, n, m, k):
 
    # Initialize ans
    ans = 0
 
    # Traverse row wise
    for i in range (n):
 
        # Initialize no of
        # consecutive empty
        # cells
        countcons = 0
 
        for j in range (m):
 
            # Check if blocked cell is
            # encountered then reset
            # countcons  to 0
            if (v[i][j] == '1'):
                countcons = 0
           
            # Check if empty cell is
            # encountered, then
            # increment countcons
            else:
                countcons += 1
 
            # Check if number of empty
            # consecutive cells
            # is greater or equal
            # to K, increment the ans
            if (countcons >= k):
                ans += 1
    
    # Return the count
    return ans
 
# Function to Traverse the
# matrix column wise
def colWise(v, n, m, k):
 
    # Initialize ans
    ans = 0
 
    # Traverse column wise
    for i in range (m):
 
        # Initialize no of
        # consecutive empty cells
        countcons = 0
         
        for j in range (n):
 
            # Check if blocked cell is
            # encountered then reset
            # countcons  to 0
            if (v[j][i] == '1'):
                countcons = 0
            
            # Check if empty cell is
            # encountered, increment
            # countcons
            else:
                countcons += 1
            
            # Check if number of empty
            # consecutive cells
            # is greater than or equal
            # to K, increment the ans
            if (countcons >= k):
                ans += 1
            
    # Return the count
    return ans
 
# Driver Code
if __name__ == "__main__":
 
    n = 3
    m = 3
    k = 1
 
    v = [['0', '0', '0'],
         ['0', '0', '0'],
         ['0', '0', '0']]
 
    # If k = 1 only
    # traverse row wise
    if (k == 1):
        print (rowWise(v, n, m, k))
    
    # Traverse both row
    # and column wise
    else:
        print (colWise(v, n, m, k) +
               rowWise(v, n, m, k))
     
# This code is contributed by Chitranayal
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find no of ways
// to select K consecutive empty
// cells from a row or column
using System;
 
class GFG{
 
// Function to Traverse
// the matrix row wise
static int rowWise(char [,]v, int n,
                       int m, int k)
{
     
    // Initialize ans
    int ans = 0;
 
    // Traverse row wise
    for(int i = 0; i < n; i++)
    {
 
        // Initialize no of
        // consecutive empty
        // cells
        int countcons = 0;
 
        for(int j = 0; j < m; j++)
        {
 
            // Check if blocked cell is
            // encountered then reset
            // countcons to 0
            if (v[i, j] == '1')
            {
                countcons = 0;
            }
 
            // Check if empty cell is
            // encountered, then
            // increment countcons
            else
            {
                countcons++;
            }
 
            // Check if number of empty
            // consecutive cells
            // is greater or equal
            // to K, increment the ans
            if (countcons >= k)
            {
                ans++;
            }
        }
    }
 
    // Return the count
    return ans;
}
 
// Function to Traverse the
// matrix column wise
static int colWise(char [,]v, int n,
                       int m, int k)
{
     
    // Initialize ans
    int ans = 0;
 
    // Traverse column wise
    for(int i = 0; i < m; i++)
    {
 
        // Initialize no of
        // consecutive empty cells
        int countcons = 0;
 
        for(int j = 0; j < n; j++)
        {
             
            // Check if blocked cell is
            // encountered then reset
            // countcons to 0
            if (v[j, i] == '1')
            {
                countcons = 0;
            }
 
            // Check if empty cell is
            // encountered, increment
            // countcons
            else
            {
                countcons++;
            }
 
            // Check if number of empty
            // consecutive cells
            // is greater than or equal
            // to K, increment the ans
            if (countcons >= k)
            {
                ans++;
            }
        }
    }
 
    // Return the count
    return ans;
}
 
// Driver Code
public static void Main(String[] args)
{
    int n = 3, m = 3, k = 1;
 
    char [,]v = { { '0', '0', '0' },
                  { '0', '0', '0' },
                  { '0', '0', '0' } };
 
    // If k = 1 only traverse row wise
    if (k == 1)
    {
        Console.Write(rowWise(v, n, m, k));
    }
 
    // Traverse both row and column wise
    else
    {
        Console.Write(colWise(v, n, m, k) +
                      rowWise(v, n, m, k));
    }
}
}
 
// This code is contributed by amal kumar choubey
chevron_right

Output: 
9


 

Time Complexity: O(N * M) 
Space Complexity: O(N * M)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.





Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :
Practice Tags :