Count of Ways to Choose N People With at Least X Men and Y Women from P Men and Q Women | Set 2
Given integers N, P, Q, X, and Y, the task is to find the number of ways to form a group of N people having at least X men and Y women from P men and Q women, where (X + Y ≤ N, X ≤ P and Y ≤ Q).
Examples:
Input: P = 4, Q = 2, N = 5, X = 3, Y = 1
Output: 6
Explanation: Suppose given pool is {m1, m2, m3, m4} and {w1, w2}. Then possible combinations are:
m1 m2 m3 m4 w1
m1 m2 m3 m4 w2
m1 m2 m3 w1 w2
m1 m2 m4 w1 w2
m1 m3 m4 w1 w2
m2 m3 m4 w1 w2
Hence the count is 6.Input: P = 5, Q = 2, N = 6, X = 4, Y = 1
Output: 7
Naive Approach: This problem is based on combinatorics, and details of the Naive approach is already discussed in Set-1 of this problem.
For some general value of P, Q, N, X and Y we can calculate the total possible ways using the following formula:
where
In this approach at every step we were calculating the value for each possible way.
Time Complexity: O(N2)
Auxiliary Space: O(1)
Efficient Approach: To solve this problem efficiently, we can use the Pascal Triangle property to calculate the , i.e.
1
1 1
1 2 1
1 3 3 1
.
.
.
which is nothing but
![]()
![]()
![]()
![]()
![]()
![]()
.
.
.
Follow the steps mentioned below:
- Use the pascal triangle to precalculate the values of the combination.
- Start iterating a loop from i = X to i = P and do the following for each iteration.
- Check if (N-i) ≥ Y and (N-i) ≤ Q.
- If the condition is satisfied then count the possible ways for i men and (N-i) women, otherwise, skip the step.
- Add the count with the total number of ways.
- Return the total count as your answer.
Below is the implementation of the approach:
C++
#include <bits/stdc++.h> using namespace std; long long int pascal[31][31]; // Function to calculate the pascal triangle void pascalTriangle() { pascal[0][0] = 1; pascal[1][0] = 1; pascal[1][1] = 1; // Loop to calculate values of // pascal triangle for ( int i = 2; i < 31; i++) { pascal[i][0] = 1; for ( int j = 1; j < i; j++) pascal[i][j] = pascal[i - 1][j] + pascal[i - 1][j - 1]; pascal[i][i] = 1; } } // Function to calculate the number of ways long long int countWays( int n, int p, int q, int x, int y) { // Variable to store the answer long long int sum = 0; // Loop to calculate the number of ways for ( long long int i = x; i <= p; i++) { if (n - i >= y && n - i <= q) sum += pascal[p][i] * pascal[q][n - i]; } return sum; } // Driver code int main() { pascalTriangle(); int P = 4, Q = 2, N = 5, X = 3, Y = 1; // Calculate possible ways for given // N, P, Q, X and Y cout << countWays(N, P, Q, X, Y) << endl; return 0; } |
Java
// Java code for the above approach import java.io.*; class GFG { static long pascal[][] = new long [ 31 ][ 31 ]; // Function to calculate the pascal triangle static void pascalTriangle() { pascal[ 0 ][ 0 ] = 1 ; pascal[ 1 ][ 0 ] = 1 ; pascal[ 1 ][ 1 ] = 1 ; // Loop to calculate values of // pascal triangle for ( int i = 2 ; i < 31 ; i++) { pascal[i][ 0 ] = 1 ; for ( int j = 1 ; j < i; j++) pascal[i][j] = pascal[i - 1 ][j] + pascal[i - 1 ][j - 1 ]; pascal[i][i] = 1 ; } } // Function to calculate the number of ways static long countWays( int n, int p, int q, int x, int y) { // Variable to store the answer long sum = 0 ; // Loop to calculate the number of ways for ( int i = x; i <= p; i++) { if (n - i >= y && n - i <= q) sum += pascal[p][i] * pascal[q][n - i]; } return sum; } // Driver code public static void main(String[] args) { pascalTriangle(); int P = 4 , Q = 2 , N = 5 , X = 3 , Y = 1 ; // Calculate possible ways for given // N, P, Q, X and Y System.out.println(countWays(N, P, Q, X, Y)); } } // This code is contributed by Potta Lokesh |
Python3
pascal = [[ 0 for i in range ( 31 )] for j in range ( 31 )] # Function to calculate the pascal triangle def pascalTriangle(): pascal[ 0 ][ 0 ] = 1 ; pascal[ 1 ][ 0 ] = 1 ; pascal[ 1 ][ 1 ] = 1 ; # Loop to calculate values of # pascal triangle for i in range ( 2 , 31 ): pascal[i][ 0 ] = 1 ; for j in range (i): pascal[i][j] = pascal[i - 1 ][j] + pascal[i - 1 ][j - 1 ]; pascal[i][i] = 1 ; # Function to calculate the number of ways def countWays(n, p, q, x, y): # Variable to store the answer sum = 0 ; # Loop to calculate the number of ways for i in range (x, p + 1 ): if (n - i > = y and n - i < = q): sum + = pascal[p][i] * pascal[q][n - i]; return sum ; # Driver code pascalTriangle(); P = 4 Q = 2 N = 5 X = 3 Y = 1 ; # Calculate possible ways for given # N, P, Q, X and Y print (countWays(N, P, Q, X, Y)) # This code is contributed by Saurabh Jaiswal |
C#
// C# code for the above approach using System; class GFG{ static long [,]pascal = new long [31, 31]; // Function to calculate the pascal triangle static void pascalTriangle() { pascal[0, 0] = 1; pascal[1, 0] = 1; pascal[1, 1] = 1; // Loop to calculate values of // pascal triangle for ( int i = 2; i < 31; i++) { pascal[i, 0] = 1; for ( int j = 1; j < i; j++) pascal[i, j] = pascal[i - 1, j] + pascal[i - 1, j - 1]; pascal[i, i] = 1; } } // Function to calculate the number of ways static long countWays( int n, int p, int q, int x, int y) { // Variable to store the answer long sum = 0; // Loop to calculate the number of ways for ( int i = x; i <= p; i++) { if (n - i >= y && n - i <= q) sum += pascal[p, i] * pascal[q, n - i]; } return sum; } // Driver code public static void Main(String[] args) { pascalTriangle(); int P = 4, Q = 2, N = 5, X = 3, Y = 1; // Calculate possible ways for given // N, P, Q, X and Y Console.WriteLine(countWays(N, P, Q, X, Y)); } } // This code is contributed by shikhasingrajput |
Javascript
<script> let pascal = new Array(31).fill(0).map(() => new Array(31).fill(0)); // Function to calculate the pascal triangle function pascalTriangle() { pascal[0][0] = 1; pascal[1][0] = 1; pascal[1][1] = 1; // Loop to calculate values of // pascal triangle for (let i = 2; i < 31; i++) { pascal[i][0] = 1; for (let j = 1; j < i; j++) pascal[i][j] = pascal[i - 1][j] + pascal[i - 1][j - 1]; pascal[i][i] = 1; } } // Function to calculate the number of ways function countWays(n, p, q, x, y) { // Variable to store the answer let sum = 0; // Loop to calculate the number of ways for (let i = x; i <= p; i++) { if (n - i >= y && n - i <= q) sum += pascal[p][i] * pascal[q][n - i]; } return sum; } // Driver code pascalTriangle(); let P = 4, Q = 2, N = 5, X = 3, Y = 1; // Calculate possible ways for given // N, P, Q, X and Y document.write(countWays(N, P, Q, X, Y)) // This code is contributed by gfgking. </script> |
6
Time Complexity: O(N)
Auxiliary Space: O(N2)
Please Login to comment...