Skip to content
Related Articles

Related Articles

Improve Article

Count of triplets in an Array with odd sum

  • Last Updated : 13 Sep, 2021
Geek Week

Given an array arr[] with N integers, find the number of triplets of i, j and k such that 1<= i < j < k <= N and arr[i] + arr[j] + arr[k] is odd.

Example:

Input: arr[] = {1, 2, 3, 4, 5}
Output: 4
Explanation: The given array contains 4 triplets with an odd sum. They are {1, 2, 4}, {1, 3, 5}, {2, 3, 4} and {2, 4, 5}.

Input: arr[] ={4, 5, 6, 4, 5, 10, 1, 7}
Output: 28

Naive Approach: The given problem can be solved by iterating over all possible unordered triplets in the array and keep a track of the number of triplets such that their sum is odd.
Time Complexity: O(N3)

Efficient Approach: The above approach can be optimized using the below property of integers:



  • odd + even + even = odd
  • odd + odd + odd = odd

Therefore, to implement the above idea, we can count the number of even and odd integers in the array. Suppose the count of odd integers is O and the count of even integers is E. So the distinct ways to arrange one odd integer and two even integers is OC1 * EC2 -> (O * E * (E-1))/2 and the distinct ways to arrange three odd integers is OC3 -> (O * (O-1) * (O-2)) / 6. The final answer will be the sum of the above two values.

Below is the implementation of the above approach:

C++




// C++ Program for the above approach
#include <iostream>
using namespace std;
 
// Function to count the number of
// unordered triplets such that their
// sum is an odd integer
int countTriplets(int arr[], int n)
{
    // Count the number of odd and
    // even integers in the array
    int odd = 0, even = 0;
    for (int i = 0; i < n; i++) {
        if (arr[i] & 1)
            odd++;
        else
            even++;
    }
 
    // Number of ways to create triplets
    // using one odd and two even integers
    int c1 = odd * (even * (even - 1)) / 2;
 
    // Number of ways to create triplets
    // using three odd integers
    int c2 = (odd * (odd - 1) * (odd - 2)) / 6;
 
    // Return answer
    return c1 + c2;
}
 
// Driver Code
int main()
{
    int arr[] = { 4, 5, 6, 4, 5, 10, 1, 7 };
    int n = sizeof(arr) / sizeof(int);
 
    // Function Call
    int ans = countTriplets(arr, n);
 
    // Print Answer
    cout << ans;
 
    return 0;
}

Java




// Java program for the above approach
import java.io.*;
 
class GFG {
 
// Function to count the number of
// unordered triplets such that their
// sum is an odd integer
static int countTriplets(int arr[], int n)
{
    // Count the number of odd and
    // even integers in the array
    int odd = 0, even = 0;
    for (int i = 0; i < n; i++) {
        if ((arr[i] & 1) != 0)
            odd++;
        else
            even++;
    }
 
    // Number of ways to create triplets
    // using one odd and two even integers
    int c1 = odd * (even * (even - 1)) / 2;
 
    // Number of ways to create triplets
    // using three odd integers
    int c2 = (odd * (odd - 1) * (odd - 2)) / 6;
 
    // Return answer
    return c1 + c2;
}
 
// Driver code
public static void main(String[] args)
{
     int arr[] = { 4, 5, 6, 4, 5, 10, 1, 7 };
    int n = arr.length;
 
    // Function Call
    int ans = countTriplets(arr, n);
 
    // Print Answer
    System.out.println(ans);
}
}
 
// This code is contributed by code_hunt.

Python3




# Python Program for the above approach
 
# Function to count the number of
# unordered triplets such that their
# sum is an odd integer
def countTriplets(arr, n):
     
    # Count the number of odd and
    # even integers in the array
    odd = 0
    even = 0
    for i in range(n):
        if (arr[i] & 1):
            odd+=1
        else:
            even+=1
     
    # Number of ways to create triplets
    # using one odd and two even integers
    c1 = odd * (even * (even - 1)) // 2
     
    # Number of ways to create triplets
    # using three odd integers
    c2 = (odd * (odd - 1) * (odd - 2)) // 6
     
    # Return answer
    return c1 + c2
     
     
# Driver Code
 
arr = [4, 5, 6, 4, 5, 10, 1, 7]
n = len(arr)
 
# Function Call
ans = countTriplets(arr, n)
 
# Print Answer
print(ans)
 
# This code is contributed by Shivani

C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to count the number of unordered
// triplets such that their sum is an odd integer
static int countTriplets(int []arr, int n)
{
     
    // Count the number of odd and
    // even integers in the array
    int odd = 0, even = 0;
    for(int i = 0; i < n; i++)
    {
        if ((arr[i] & 1) != 0)
            odd++;
        else
            even++;
    }
 
    // Number of ways to create triplets
    // using one odd and two even integers
    int c1 = odd * (even * (even - 1)) / 2;
 
    // Number of ways to create triplets
    // using three odd integers
    int c2 = (odd * (odd - 1) * (odd - 2)) / 6;
 
    // Return answer
    return c1 + c2;
}
 
// Driver code
public static void Main(String[] args)
{
    int []arr = { 4, 5, 6, 4, 5, 10, 1, 7 };
    int n = arr.Length;
 
    // Function Call
    int ans = countTriplets(arr, n);
 
    // Print Answer
    Console.Write(ans);
}
}
 
// This code is contributed by shivanisinghss2110.

Javascript




<script>
 
        // JavaScript program for the above approach;
 
        // Function to count the number of
        // unordered triplets such that their
        // sum is an odd integer
        function countTriplets(arr, n)
        {
         
            // Count the number of odd and
            // even integers in the array
            let odd = 0, even = 0;
            for (let i = 0; i < n; i++) {
                if (arr[i] & 1)
                    odd++;
                else
                    even++;
            }
 
            // Number of ways to create triplets
            // using one odd and two even integers
            let c1 = Math.floor(odd * (even * (even - 1)) / 2);
 
            // Number of ways to create triplets
            // using three odd integers
            let c2 = Math.floor((odd * (odd - 1) * (odd - 2)) / 6);
 
            // Return answer
 
            return c1 + c2;
        }
 
        // Driver Code
 
        let arr = [4, 5, 6, 4, 5, 10, 1, 7];
        let n = arr.length;
        // Function Call
        let ans = countTriplets(arr, n);
 
        // Print Answer
        document.write(ans);
 
   // This code is contributed by Potta Lokesh
    </script>
Output
28

Time Complexity: O(N)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :