Open In App

Count of subsets not containing adjacent elements

Improve
Improve
Like Article
Like
Save
Share
Report

Given an array arr[] of N integers, the task is to find the count of all the subsets which do not contain adjacent elements from the given array.
Examples:  

Input: arr[] = {2, 7} 
Output:
All possible subsets are {}, {2} and {7}.

Input: arr[] = {3, 5, 7} 
Output: 5  

Method 1: Using bit masking  

Idea: The idea is to use a bit-mask pattern to generate all the combinations as discussed in this article. While considering a subset, we need to check if it contains adjacent elements or not. A subset will contain adjacent elements if two or more consecutive bits are set in its bit mask. In order to check if the bit-mask has consecutive bits set or not, we can right shift the mask by one bit and take it AND with the mask. If the result of the AND operation is 0, then the mask does not have consecutive sets and therefore, the corresponding subset will not have adjacent elements from the array.
Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <iostream>
#include <math.h>
using namespace std;
 
// Function to return the count
// of possible subsets
int cntSubsets(int* arr, int n)
{
 
    // Total possible subsets of n
    // sized array is (2^n - 1)
    unsigned int max = pow(2, n);
 
    // To store the required
    // count of subsets
    int result = 0;
 
    // Run from i 000..0 to 111..1
    for (int i = 0; i < max; i++) {
        int counter = i;
 
        // If current subset has consecutive
        // elements from the array
        if (counter & (counter >> 1))
            continue;
        result++;
    }
    return result;
}
 
// Driver code
int main()
{
    int arr[] = { 3, 5, 7 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << cntSubsets(arr, n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
     
class GFG
{
 
// Function to return the count
// of possible subsets
static int cntSubsets(int[] arr, int n)
{
 
    // Total possible subsets of n
    // sized array is (2^n - 1)
    int max = (int) Math.pow(2, n);
 
    // To store the required
    // count of subsets
    int result = 0;
 
    // Run from i 000..0 to 111..1
    for (int i = 0; i < max; i++)
    {
        int counter = i;
 
        // If current subset has consecutive
        if ((counter & (counter >> 1)) > 0)
            continue;
        result++;
    }
    return result;
}
 
// Driver code
static public void main (String []arg)
{
    int arr[] = { 3, 5, 7 };
    int n = arr.length;
 
    System.out.println(cntSubsets(arr, n));
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 implementation of the approach
 
# Function to return the count
# of possible subsets
def cntSubsets(arr, n):
 
    # Total possible subsets of n
    # sized array is (2^n - 1)
    max = pow(2, n)
 
    # To store the required
    # count of subsets
    result = 0
 
    # Run from i 000..0 to 111..1
    for i in range(max):
        counter = i
 
        # If current subset has consecutive
        # elements from the array
        if (counter & (counter >> 1)):
            continue
        result += 1
 
    return result
 
# Driver code
arr = [3, 5, 7]
n = len(arr)
 
print(cntSubsets(arr, n))
 
# This code is contributed by Mohit Kumar


C#




// C# implementation of the approach
using System;
 
class GFG
{
     
// Function to return the count
// of possible subsets
static int cntSubsets(int[] arr, int n)
{
 
    // Total possible subsets of n
    // sized array is (2^n - 1)
    int max = (int) Math.Pow(2, n);
 
    // To store the required
    // count of subsets
    int result = 0;
 
    // Run from i 000..0 to 111..1
    for (int i = 0; i < max; i++)
    {
        int counter = i;
 
        // If current subset has consecutive
        if ((counter & (counter >> 1)) > 0)
            continue;
        result++;
    }
    return result;
}
 
// Driver code
static public void Main (String []arg)
{
    int []arr = { 3, 5, 7 };
    int n = arr.Length;
 
    Console.WriteLine(cntSubsets(arr, n));
}
}
     
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the count
// of possible subsets
function cntSubsets(arr, n)
{
 
    // Total possible subsets of n
    // sized array is (2^n - 1)
    var max = Math.pow(2, n);
 
    // To store the required
    // count of subsets
    var result = 0;
 
    // Run from i 000..0 to 111..1
    for (var i = 0; i < max; i++) {
        var counter = i;
 
        // If current subset has consecutive
        // elements from the array
        if (counter & (counter >> 1))
            continue;
        result++;
    }
    return result;
}
 
// Driver code
var arr = [3, 5, 7];
var n = arr.length;
document.write( cntSubsets(arr, n));
 
 
</script>


Output

5

Time Complexity: O(2n), where n is the size of the given array.
Auxiliary Space: O(1), no extra space is required, so it is a constant.

Method 2: The above approach takes exponential time. In the above code, the number of bit-masks without consecutive 1s was required. This count can be obtained in linear time using dynamic programming as discussed in this article.
Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <iostream>
using namespace std;
 
// Function to return the count
// of possible subsets
int cntSubsets(int* arr, int n)
{
    int a[n], b[n];
 
    a[0] = b[0] = 1;
 
    for (int i = 1; i < n; i++) {
 
        // If previous element was 0 then 0
        // as well as 1 can be appended
        a[i] = a[i - 1] + b[i - 1];
 
        // If previous element was 1 then
        // only 0 can be appended
        b[i] = a[i - 1];
    }
 
    // Store the count of all possible subsets
    int result = a[n - 1] + b[n - 1];
 
    return result;
}
 
// Driver code
int main()
{
    int arr[] = { 3, 5, 7 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << cntSubsets(arr, n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
// Function to return the count
// of possible subsets
static int cntSubsets(int []arr, int n)
{
    int []a = new int[n];
    int []b = new int[n];
 
    a[0] = b[0] = 1;
 
    for (int i = 1; i < n; i++)
    {
 
        // If previous element was 0 then 0
        // as well as 1 can be appended
        a[i] = a[i - 1] + b[i - 1];
 
        // If previous element was 1 then
        // only 0 can be appended
        b[i] = a[i - 1];
    }
 
    // Store the count of all possible subsets
    int result = a[n - 1] + b[n - 1];
 
    return result;
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 3, 5, 7 };
    int n = arr.length;
 
    System.out.println(cntSubsets(arr, n));
}
}
 
// This code is contributed by Princi Singh


Python3




# Python3 implementation of the approach
 
# Function to return the count
# of possible subsets
def cntSubsets(arr, n) :
 
    a = [0] * n
    b = [0] * n;
 
    a[0] = b[0] = 1;
 
    for i in range(1, n) :
         
        # If previous element was 0 then 0
        # as well as 1 can be appended
        a[i] = a[i - 1] + b[i - 1];
 
        # If previous element was 1 then
        # only 0 can be appended
        b[i] = a[i - 1];
 
    # Store the count of all possible subsets
    result = a[n - 1] + b[n - 1];
 
    return result;
 
# Driver code
if __name__ == "__main__" :
 
    arr = [ 3, 5, 7 ];
    n = len(arr);
 
    print(cntSubsets(arr, n));
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
     
class GFG
{
 
// Function to return the count
// of possible subsets
static int cntSubsets(int []arr, int n)
{
    int []a = new int[n];
    int []b = new int[n];
 
    a[0] = b[0] = 1;
 
    for (int i = 1; i < n; i++)
    {
 
        // If previous element was 0 then 0
        // as well as 1 can be appended
        a[i] = a[i - 1] + b[i - 1];
 
        // If previous element was 1 then
        // only 0 can be appended
        b[i] = a[i - 1];
    }
 
    // Store the count of all possible subsets
    int result = a[n - 1] + b[n - 1];
 
    return result;
}
 
// Driver code
public static void Main(String[] args)
{
    int []arr = { 3, 5, 7 };
    int n = arr.Length;
 
    Console.WriteLine(cntSubsets(arr, n));
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the count
// of possible subsets
function cntSubsets(arr, n)
{
    var a = Array(n);
    var b = Array(n);
 
    a[0] = b[0] = 1;
 
    for (var i = 1; i < n; i++) {
 
        // If previous element was 0 then 0
        // as well as 1 can be appended
        a[i] = a[i - 1] + b[i - 1];
 
        // If previous element was 1 then
        // only 0 can be appended
        b[i] = a[i - 1];
    }
 
    // Store the count of all possible subsets
    var result = a[n - 1] + b[n - 1];
 
    return result;
}
 
// Driver code
var arr = [3, 5, 7 ];
var n = arr.length;
document.write( cntSubsets(arr, n));
 
</script>


Output

5

Time Complexity: O(n)
Auxiliary Space: O(n), where n is the size of the given array

Another approach : Space optimized

 we can space optimize previous approach by using only two variables to store the previous values instead of two arrays. 

Implementation Steps:

  • Initialize two variables a and b to 1.
  • Use a loop to iterate over the array elements from index 1 to n-1.
  • For each element at index i, update a and b using the following formulas:
    a = a + b
    b = previous value of a
  • After the loop, compute the total number of possible subsets as the sum of a and b.
  • Return the total number of possible subsets.

Implementation:

C++




// C++ implementation of the approach
#include <iostream>
using namespace std;
 
// Function to return the count
// of possible subsets
int cntSubsets(int* arr, int n)
{
    int a = 1, b = 1;
 
    for (int i = 1; i < n; i++) {
 
        // If previous element was 0 then 0
        // as well as 1 can be appended
        int temp = a;
        a = a + b;
 
        // If previous element was 1 then
        // only 0 can be appended
        b = temp;
    }
 
    // Store the count of all possible subsets
    int result = a + b;
 
    return result;
}
 
// Driver code
int main()
{
    int arr[] = { 3, 5, 7 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << cntSubsets(arr, n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.io.*;
 
class Main {
  // Function to return the count
// of possible subsets
static int cntSubsets(int[] arr, int n) {
    int a = 1, b = 1;
 
    for (int i = 1; i < n; i++) {
 
        // If previous element was 0 then 0
        // as well as 1 can be appended
        int temp = a;
        a = a + b;
 
        // If previous element was 1 then
        // only 0 can be appended
        b = temp;
    }
 
    // Store the count of all possible subsets
    int result = a + b;
 
    return result;
}
 
// Driver code
public static void main(String[] args) {
    int[] arr = { 3, 5, 7 };
    int n = arr.length;
 
    System.out.println(cntSubsets(arr, n));
}
}


Python3




# Function to return the count
# of possible subsets
 
 
def cntSubsets(arr, n):
    a = 1
    b = 1
 
    for i in range(1, n):
        # If previous element was 0 then 0
        # as well as 1 can be appended
        temp = a
        a = a + b
 
        # If previous element was 1 then
        # only 0 can be appended
        b = temp
 
    # Store the count of all possible subsets
    result = a + b
 
    return result
 
 
# Driver code
arr = [3, 5, 7]
n = len(arr)
 
print(cntSubsets(arr, n))


C#




using System;
 
public class Program {
    public static int CountSubsets(int[] arr, int n)
    {
        int a = 1, b = 1;
        for (int i = 1; i < n; i++) {
 
            // If previous element was 0 then 0
            // as well as 1 can be appended
            int temp = a;
            a = a + b;
 
            // If previous element was 1 then
            // only 0 can be appended
            b = temp;
        }
 
        // Store the count of all possible subsets
        int result = a + b;
 
        return result;
    }
 
    public static void Main()
    {
        int[] arr = { 3, 5, 7 };
        int n = arr.Length;
 
        Console.WriteLine(CountSubsets(arr, n));
    }
}


Javascript




// Function to return the count of possible subsets
function cntSubsets(arr) {
    let a = 1, b = 1;
 
    for (let i = 1; i < arr.length; i++) {
 
        // If previous element was 0 then 0
        // as well as 1 can be appended
        let temp = a;
        a = a + b;
 
        // If previous element was 1 then
        // only 0 can be appended
        b = temp;
    }
 
    // Store the count of all possible subsets
    let result = a + b;
 
    return result;
}
 
// Driver code
    const arr = [3, 5, 7];
 
    console.log(cntSubsets(arr));


Output

5

Time Complexity: O(n)
Auxiliary Space: O(1)

Method 3; If we take a closer look at the pattern, we can observe that the count is actually (N + 2)th Fibonacci number for N ? 1.  

n = 1, count = 2 = fib(3) 
n = 2, count = 3 = fib(4) 
n = 3, count = 5 = fib(5) 
n = 4, count = 8 = fib(6) 
n = 5, count = 13 = fib(7) 
……………. 

Therefore, the subsets can be counted in O(log n) time using method 5 of this article.



Last Updated : 29 Aug, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads