Count of subsequences consisting of the same element

Given an array A[] consisting of N integers, the task is to find the total number of subsequence which contain only one distinct number repeated throughout the subsequence.

Examples:  

Input: A[] = {1, 2, 1, 5, 2} 
Output:
Explanation: 
Subsequences {1}, {2}, {1}, {5}, {2}, {1, 1} and {2, 2} satisfy the required conditions.

Input: A[] = {5, 4, 4, 5, 10, 4} 
Output: 11 
Explanation: 
Subsequences {5}, {4}, {4}, {5}, {10}, {4}, {5, 5}, {4, 4}, {4, 4}, {4, 4} and {4, 4, 4} satisfy the required conditions. 

Approach: 
Follow the steps below to solve the problem: 



 Number of subsequences possible by arr[i] = 2freq[arr[i]] – 1 

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count subsequences in
// array containing same element
void CountSubSequence(int A[], int N)
{
    // Stores the count
    // of subsequences
    int result = 0;
 
    // Stores the frequency
    // of array elements
    map<int, int> mp;
 
    for (int i = 0; i < N; i++) {
 
        // Update frequency of A[i]
        mp[A[i]]++;
    }
 
    for (auto it : mp) {
 
        // Calculate number of subsequences
        result
            = result + pow(2, it.second) - 1;
    }
 
    // Print the result
    cout << result << endl;
}
 
// Driver code
int main()
{
    int A[] = { 5, 4, 4, 5, 10, 4 };
 
    int N = sizeof(A) / sizeof(A[0]);
 
    CountSubSequence(A, N);
 
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to implement
// the above approach
import java.util.*;
 
class GFG{
 
// Function to count subsequences in
// array containing same element
static void CountSubSequence(int A[], int N)
{
     
    // Stores the count
    // of subsequences
    int result = 0;
 
    // Stores the frequency
    // of array elements
    Map<Integer,
        Integer> mp = new HashMap<Integer,
                                  Integer>();
 
    for(int i = 0; i < N; i++)
    {
         
        // Update frequency of A[i]
        mp.put(A[i], mp.getOrDefault(A[i], 0) + 1);
    }
 
    for(Integer it : mp.values())
    {
         
        // Calculate number of subsequences
        result = result + (int)Math.pow(2, it) - 1;
    }
     
    // Print the result
    System.out.println(result);
}
 
// Driver code
public static void main(String[] args)
{
    int A[] = { 5, 4, 4, 5, 10, 4 };
    int N = A.length;
     
    CountSubSequence(A, N);
}
}
 
// This code is contributed by offbeat
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to implement 
# the above approach 
 
# Function to count subsequences in 
# array containing same element 
def CountSubSequence(A, N):
     
    # Stores the frequency 
    # of array elements 
    mp = {}
     
    for element in A:
        if element in mp:
            mp[element] += 1
        else:
            mp[element] = 1
             
    result = 0
     
    for key, value in mp.items():
         
        # Calculate number of subsequences 
        result += pow(2, value) - 1
         
    # Print the result     
    print(result)
 
# Driver code
A = [ 5, 4, 4, 5, 10, 4 ]
N = len(A)
 
CountSubSequence(A, N)
 
# This code is contributed by jojo9911
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to count subsequences in
// array containing same element
public static void CountSubSequence(int []A, int N)
{
     
    // Stores the count
    // of subsequences
    int result = 0;
 
    // Stores the frequency
    // of array elements
    var mp = new Dictionary<int, int>();
 
    for(int i = 0; i < N; i++)
    {
         
        // Update frequency of A[i]
        if(mp.ContainsKey(A[i]))
            mp[A[i]] += 1;
        else
            mp.Add(A[i], 1);
    }
 
    foreach(var it in mp)
    {
         
        // Calculate number of subsequences
        result = result +
                 (int)Math.Pow(2, it.Value) - 1;
    }
     
    // Print the result
    Console.Write(result);
}
 
// Driver code
public static void Main()
{
    int []A = { 5, 4, 4, 5, 10, 4 };
    int N = A.Length;
     
    CountSubSequence(A, N);
}
}
 
// This code is contributed by grand_master
chevron_right

Output: 
11


 

Time Complexity: O(NlogN) 
Auxiliary Space: O(N)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.





Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : offbeat, grand_master, jojo9911

Article Tags :
Practice Tags :