Skip to content
Related Articles
Count of subarrays having sum as a perfect cube
• Last Updated : 20 May, 2021

Given an array arr[], the task is to count the subarrays having sum as a perfect cube.
Examples:

Input: arr[] = {6, 10, 9, 2, 1, 113}
Output:
Explanation:
Possible subarrays are –
{{1}, {6, 10, 9, 2, 1}, {9, 2, 1, 113}}
Input: arr[] = {1}
Output:
Explanation:
There is only one such subarray whose sum is a perfect cube

Approach: The idea is to find the prefix sum of the array such that the sum of any subarray can be computed in O(1). Then iterate over every possible subarray and check that the sum of the subarray is a perfect cube if yes then increment the count by 1.
Below is the implementation of the above approach:

## C++

 `// C++ implementationn to count``// subarrays having sum``// as  a perfect cube` `#include ``using` `namespace` `std;``#define int long long` `// Function to check for``// perfect cube or not``bool` `isCubicSquare(``int` `x)``{``    ``int` `curoot = round(``pow``(x, 1.0 / 3.0));` `    ``if` `(curoot * curoot * curoot == x)``        ``return` `true``;``    ``return` `false``;``}` `// Function to count the subarray``// whose sum is a perfect cube``int` `count(``int` `arr[], ``int` `n)``{``    ``int` `pre[n + 1];` `    ``pre = 0;` `    ``// Loop to find the prefix sum``    ``// of the array``    ``for` `(``int` `i = 1; i <= n; i++) {``        ``pre[i] = pre[i - 1] + arr[i - 1];``    ``}` `    ``int` `ans = 0;` `    ``// Loop to take every``    ``// possible subarrays``    ``for` `(``int` `i = 0; i <= n; i++) {``        ``for` `(``int` `j = i + 1; j <= n; j++) {``            ` `            ``// check for every``            ``// possible subarrays``            ``if` `(isCubicSquare((``double``)``                   ``(pre[j] - pre[i]))) {``                ``ans++;``            ``}``        ``}``    ``}` `    ``return` `ans;``}` `// Driver Code``int32_t main()``{``    ``int` `arr = { 6, 10, 9, 2, 1, 113 };` `    ``cout << count(arr, 6);` `    ``return` `0;``}`

## Java

 `// Java implementationn to count subarrays ``// having sum as a perfect cube``import` `java.lang.Math;``class` `GFG{``    ` `// Function to check for``// perfect cube or not``public` `static` `boolean` `isCubicSquare(``int` `x)``{``    ``double` `curoot = Math.round(``                    ``Math.pow(x, ``1.0` `/ ``3.0``));``    ` `    ``if` `(curoot * curoot * curoot == x)``        ``return` `true``;``    ``return` `false``;``}``    ` `// Function to count the subarray``// whose sum is a perfect cube``public` `static` `int` `count(``int` `arr[], ``int` `n)``{``    ``int``[] pre = ``new` `int``[n + ``1``];``    ``pre[``0``] = ``0``;``    ` `    ``// Loop to find the prefix sum``    ``// of the array``    ``for``(``int` `i = ``1``; i <= n; i++)``    ``{``       ``pre[i] = pre[i - ``1``] + arr[i - ``1``];``    ``}``    ` `    ``int` `ans = ``0``;``    ` `    ``// Loop to take every``    ``// possible subarrays``    ``for``(``int` `i = ``0``; i <= n; i++)``    ``{``       ``for``(``int` `j = i + ``1``; j <= n; j++)``       ``{``           ` `          ``// Check for every``          ``// possible subarrays``          ``if` `(isCubicSquare((pre[j] - pre[i])))``          ``{``              ``ans++;``          ``}``       ``}``    ``}``    ``return` `ans;``}` `// Driver code``public` `static` `void` `main(String[] args)``{``    ``int` `arr[] = { ``6``, ``10``, ``9``, ``2``, ``1``, ``113` `};` `    ``System.out.print(count(arr, ``6``));``}``}` `// This code is contributed by divyeshrabadiya07`

## Python3

 `# Python3 implementationn to count``# subarrays having sum``# as  a perfect cube` `# Function to check for``# perfect cube or not``def` `isCubicSquare(x):``  ` `    ``curoot ``=` `round``(``pow``(x,``                   ``1.0` `/` `3.0``))` `    ``if` `(curoot ``*` `curoot ``*``        ``curoot ``=``=` `x):``        ``return` `True``    ``return` `False` `# Function to count the subarray``# whose sum is a perfect cube``def` `count(arr, n):` `    ``pre ``=` `[``0``] ``*` `(n ``+` `1``)``    ``pre[``0``] ``=` `0` `    ``# Loop to find the prefix``    ``# sum of the array``    ``for`  `i ``in` `range` `(``1``, n ``+` `1``):``        ``pre[i] ``=` `pre[i ``-` `1``] ``+` `arr[i ``-` `1``]``   ` `    ``ans ``=` `0` `    ``# Loop to take every``    ``# possible subarrays``    ``for` `i ``in` `range` `(n ``+` `1``):``        ``for` `j ``in` `range` `(i ``+` `1``, n ``+` `1``):``            ` `            ``# Check for every``            ``# possible subarrays``            ``if` `(isCubicSquare((pre[j] ``-``                               ``pre[i]))):``                ``ans ``+``=` `1``     ` `    ``return` `ans` `# Driver Code``if` `__name__ ``=``=` `"__main__"``:``  ` `    ``arr ``=` `[``6``, ``10``, ``9``, ``2``, ``1``, ``113``]``    ``print` `(count(arr, ``6``))` `# This code is contributed by Chitranayal`

## C#

 `// C# implementationn to count subarrays``// having sum as a perfect cube``using` `System;``class` `GFG{``    ` `// Function to check for``// perfect cube or not``public` `static` `bool` `isCubicSquare(``int` `x)``{``    ``double` `curoot = Math.Round(``                    ``Math.Pow(x, 1.0 / 3.0));``    ` `    ``if` `(curoot * curoot * curoot == x)``        ``return` `true``;``    ``return` `false``;``}``    ` `// Function to count the subarray``// whose sum is a perfect cube``public` `static` `int` `count(``int` `[]arr, ``int` `n)``{``    ``int``[] pre = ``new` `int``[n + 1];``    ``pre = 0;``    ` `    ``// Loop to find the prefix sum``    ``// of the array``    ``for``(``int` `i = 1; i <= n; i++)``    ``{``       ``pre[i] = pre[i - 1] + arr[i - 1];``    ``}``    ` `    ``int` `ans = 0;``    ` `    ``// Loop to take every``    ``// possible subarrays``    ``for``(``int` `i = 0; i <= n; i++)``    ``{``       ``for``(``int` `j = i + 1; j <= n; j++)``       ``{``           ` `          ``// Check for every``          ``// possible subarrays``          ``if` `(isCubicSquare((pre[j] - pre[i])))``          ``{``              ``ans++;``          ``}``       ``}``    ``}``    ``return` `ans;``}` `// Driver code``public` `static` `void` `Main()``{``    ``int` `[]arr = { 6, 10, 9, 2, 1, 113 };` `    ``Console.Write(count(arr, 6));``}``}` `// This code is contributed by Code_Mech`

## Javascript

 ``
Output:
`3`

Performance Analysis:

• Time Complexity: O(N2)
• Auxiliary Space: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live

My Personal Notes arrow_drop_up