Count of subarrays consisting of only prime numbers

Given an array A[] of length N, the task is to find the number of subarrays made up of only prime numbers.

Examples:

Input: arr[] = {2, 3, 4, 5, 7} 
Output:
Explanation: 
All possible subarrays made up of only prime numbers are {{2}, {3}, {2, 3}, {5}, {7}, {5, 7}}
Input: arr[] = {2, 3, 5, 6, 7, 11, 3, 5, 9, 3} 
Output: 17

Naive Approach: The simplest approach to solve the problem is to generate all possible subarrays from the given array and check if it made up of only prime numbers or not. 
Time Complexity: O(N3 * √max(array)), where √M is the time required to check if a number is prime or not and this M can range [min(arr), max(arr)] 
Auxiliary Space: O(1)
Efficient Approach: The following observation needs to be made to optimize the above approach:
 

Count of subarrays from an array of length M is equal to M * (M + 1) / 2.



Therefore, from a given array, a contiguous subarray of length M consisting only of primes will generate M * (M + 1) / 2 subarrays of length.
Follow the steps below to solve the problem: 
 

  • Traverse the array and for every element check if it is a prime or not.
  • For every prime number found, keep incrementing count.
  • For every non-prime element, update the required answer by adding count * (count + 1) / 2 and reset count to 0.
  • Finally, print the required subarray.

Below the implementation of the above approach:
 

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if a number
// is prime or not.
bool is_prime(int n)
{
    if (n <= 1)
        return 0;
 
    for (int i = 2; i * i <= n; i++) {
 
        // If n has any factor other than 1,
        // then n is non-prime.
        if (n % i == 0)
            return 0;
    }
 
    return 1;
}
 
// Function to return the count of
// subarrays made up of prime numbers only
int count_prime_subarrays(int ar[], int n)
{
 
    // Stores the answer
    int ans = 0;
 
    // Stores the count of continous
    // prime numbers in an array
    int count = 0;
 
    for (int i = 0; i < n; i++) {
 
        // If the current array
        // element is prime
        if (is_prime(ar[i]))
 
            // Increase the count
            count++;
        else {
 
            if (count) {
 
                // Update count of subarrays
                ans += count * (count + 1)
                       / 2;
                count = 0;
            }
        }
    }
 
    // If the array ended with a
    // continous prime sequence
    if (count)
        ans += count * (count + 1) / 2;
 
    return ans;
}
 
// Driver Code
int main()
{
    int N = 10;
    int ar[] = { 2, 3, 5, 6, 7,
                 11, 3, 5, 9, 3 };
    cout << count_prime_subarrays(ar, N);
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Program to implement
// the above approach
import java.util.*;
class GFG{
 
// Function to check if a number
// is prime or not.
static boolean is_prime(int n)
{
    if (n <= 1)
         return false;
 
    for (int i = 2; i * i <= n; i++)
    {
 
        // If n has any factor other than 1,
        // then n is non-prime.
        if (n % i == 0)
             return false
    }
    return true;
}
 
// Function to return the count of
// subarrays made up of prime numbers only
static int count_prime_subarrays(int ar[], int n)
{
 
    // Stores the answer
    int ans = 0;
 
    // Stores the count of continous
    // prime numbers in an array
    int count = 0;
 
    for (int i = 0; i < n; i++)
    {
 
        // If the current array
        // element is prime
        if (is_prime(ar[i]))
 
            // Increase the count
            count++;
        else
        {
            if (count != 0)
            {
 
                // Update count of subarrays
                ans += count * (count + 1) / 2;
                count = 0;
            }
        }
    }
 
    // If the array ended with a
    // continous prime sequence
    if (count != 0)
        ans += count * (count + 1) / 2;
 
    return ans;
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 10;
    int []ar = { 2, 3, 5, 6, 7,
                11, 3, 5, 9, 3 };
    System.out.print(count_prime_subarrays(ar, N));
}
}
 
// This code is contributed by PrinciRaj1992

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to implement
# the above approach
 
# Function to check if a number
# is prime or not.
def is_prime(n):
 
    if(n <= 1):
        return 0
 
    i = 2
    while(i * i <= n):
 
        # If n has any factor other than 1,
        # then n is non-prime.
        if(n % i == 0):
            return 0
 
        i += 1
 
    return 1
 
# Function to return the count of
# subarrays made up of prime numbers only
def count_prime_subarrays(ar, n):
 
    # Stores the answer
    ans = 0
 
    # Stores the count of continous
    # prime numbers in an array
    count = 0
 
    for i in range(n):
 
        # If the current array
        # element is prime
        if(is_prime(ar[i])):
 
            # Increase the count
            count += 1
 
        else:
            if(count):
 
                # Update count of subarrays
                ans += count * (count + 1) // 2
                count = 0
 
    # If the array ended with a
    # continous prime sequence
    if(count):
        ans += count * (count + 1) // 2
 
    return ans
 
# Driver Code
N = 10
ar = [ 2, 3, 5, 6, 7,
       11, 3, 5, 9, 3 ]
 
# Function call
print(count_prime_subarrays(ar, N))
 
# This code is contributed by Shivam Singh

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program to implement
// the above approach
using System;
class GFG{
 
// Function to check if a number
// is prime or not.
static bool is_prime(int n)
{
    if (n <= 1)
         return false;
 
    for (int i = 2; i * i <= n; i++)
    {
 
        // If n has any factor other than 1,
        // then n is non-prime.
        if (n % i == 0)
             return false
    }
    return true;
}
 
// Function to return the count of
// subarrays made up of prime numbers only
static int count_prime_subarrays(int []ar, int n)
{
 
    // Stores the answer
    int ans = 0;
 
    // Stores the count of continous
    // prime numbers in an array
    int count = 0;
 
    for (int i = 0; i < n; i++)
    {
 
        // If the current array
        // element is prime
        if (is_prime(ar[i]))
 
            // Increase the count
            count++;
        else
        {
            if (count != 0)
            {
 
                // Update count of subarrays
                ans += count * (count + 1) / 2;
                count = 0;
            }
        }
    }
 
    // If the array ended with a
    // continous prime sequence
    if (count != 0)
        ans += count * (count + 1) / 2;
 
    return ans;
}
 
// Driver Code
public static void Main(String[] args)
{
    int N = 10;
    int []ar = { 2, 3, 5, 6, 7,
                11, 3, 5, 9, 3 };
    Console.Write(count_prime_subarrays(ar, N));
}
}
 
// This code is contributed by Rajput-Ji

chevron_right


Output: 

17





 

Time Complexity: O(N * √max(arr)), where √M is the time required to check if a number is prime or not and this M can range [min(arr), max(arr)] 
Auxiliary Space: O(1)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.