Given an array of points **points[]** in a cartesian coordinate system, the task is to find the count of the squares that are parallel to the coordinate axis.

**Examples:**

Input:points[] = {(0, 0), (0, 2), (2, 0), (2, 2), (1, 1)}

Output:1

Explanation:

As the points (0, 0), (0, 2), (2, 0), (2, 2) forms square which is parallel to the X-axis and Y-axis, Hence the count of such squares is 1.

Input:points[] = {(2, 0), (0, 2), (2, 2), (0, 0), (-2, 2), (-2, 0)}

Output:2

Explanation:

As the points (0, 0), (0, 2), (2, 0), (2, 2) forms one square, whereas points (0, 0), (0, 2), (-2, 0), (-2, 2) forms other square which is parallel to the X-axis and Y-axis,

Hence the count of such squares is 2.

**Approach:** The idea is to choose two points from the array of points such that these two points are parallel to co-ordinate axis and then find other two points of the square with the help of the distance between the points. If those points exist in the array then, there is one such possible square.

Below is the implementation of the above approach:

## C++

`// C++ implementation to find count of Squares ` `// that are parallel to the coordinate axis ` `// from the given set of N points ` ` ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `#define sz(x) int(x.size()) ` ` ` `// Function to get distance ` `// between two points ` `int` `get_dis(pair<` `int` `, ` `int` `> p1, ` ` ` `pair<` `int` `, ` `int` `> p2) ` `{ ` ` ` `int` `a = ` `abs` `(p1.first - p2.first); ` ` ` `int` `b = ` `abs` `(p1.second - p2.second); ` ` ` `return` `((a * a) + (b * b)); ` `} ` ` ` `// Function to check that points ` `// forms a square and parallel to ` `// the co-ordinate axis ` `bool` `check(pair<` `int` `, ` `int` `> p1, ` ` ` `pair<` `int` `, ` `int` `> p2, ` ` ` `pair<` `int` `, ` `int` `> p3, ` ` ` `pair<` `int` `, ` `int` `> p4) ` `{ ` ` ` ` ` `int` `d2 = get_dis(p1, p2); ` ` ` `int` `d3 = get_dis(p1, p3); ` ` ` `int` `d4 = get_dis(p1, p4); ` ` ` `if` `(d2 == d3 ` ` ` `&& 2 * d2 == d4 ` ` ` `&& 2 * get_dis(p2, p4) == get_dis(p2, p3)) { ` ` ` `return` `true` `; ` ` ` `} ` ` ` `if` `(d3 == d4 ` ` ` `&& 2 * d3 == d2 ` ` ` `&& 2 * get_dis(p3, p2) == get_dis(p3, p4)) { ` ` ` `return` `true` `; ` ` ` `} ` ` ` `if` `(d2 == d4 ` ` ` `&& 2 * d2 == d3 ` ` ` `&& 2 * get_dis(p2, p3) == get_dis(p2, p4)) { ` ` ` `return` `true` `; ` ` ` `} ` ` ` `return` `false` `; ` `} ` ` ` `// Function to find all the squares which is ` `// parallel to co-ordinate axis ` `int` `count(map<pair<` `int` `, ` `int` `>, ` `int` `> hash, ` ` ` `vector<pair<` `int` `, ` `int` `> > v, ` `int` `n) ` `{ ` ` ` `int` `ans = 0; ` ` ` `map<pair<` `int` `, ` `int` `>, ` `int` `> vis; ` ` ` ` ` `// Loop to choose two points ` ` ` `// from the array of points ` ` ` `for` `(` `int` `i = 0; i < n; i++) { ` ` ` `for` `(` `int` `j = 0; j < n; j++) { ` ` ` `if` `(i == j) ` ` ` `continue` `; ` ` ` `pair<` `int` `, ` `int` `> p1 ` ` ` `= make_pair(v[i].first, ` ` ` `v[j].second); ` ` ` `pair<` `int` `, ` `int` `> p2 ` ` ` `= make_pair(v[j].first, ` ` ` `v[i].second); ` ` ` `set<pair<` `int` `, ` `int` `> > s; ` ` ` `s.insert(v[i]); ` ` ` `s.insert(v[j]); ` ` ` `s.insert(p1); ` ` ` `s.insert(p2); ` ` ` `if` `(sz(s) != 4) ` ` ` `continue` `; ` ` ` ` ` `// Condition to check if the ` ` ` `// other points are present in the map ` ` ` `if` `(hash.find(p1) != hash.end() ` ` ` `&& hash.find(p2) != hash.end()) { ` ` ` `if` `((!vis[v[i]] || !vis[v[j]] ` ` ` `|| !vis[p1] || !vis[p2]) ` ` ` `&& (check(v[i], v[j], p1, p2))) { ` ` ` ` ` `vis[v[i]] = 1; ` ` ` `vis[v[j]] = 1; ` ` ` `vis[p1] = 1; ` ` ` `vis[p2] = 1; ` ` ` `ans++; ` ` ` `} ` ` ` `} ` ` ` `} ` ` ` `} ` ` ` `cout << ans; ` ` ` `return` `ans; ` `} ` ` ` `// Function to Count the number of squares ` `void` `countOfSquares(vector<pair<` `int` `, ` `int` `> > v, ` `int` `n) ` `{ ` ` ` `ios_base::sync_with_stdio(0); ` ` ` `cin.tie(0); ` ` ` ` ` `map<pair<` `int` `, ` `int` `>, ` `int` `> hash; ` ` ` ` ` `// Declaring iterator to a vector ` ` ` `vector<pair<` `int` `, ` `int` `> >::iterator ptr; ` ` ` ` ` `// Adding the points to hash ` ` ` `for` `(ptr = v.begin(); ptr < v.end(); ptr++) ` ` ` `hash[*ptr] = 1; ` ` ` ` ` `// Count the number of squares ` ` ` `count(hash, v, n); ` `} ` ` ` `// Driver Code ` `int` `main() ` `{ ` ` ` ` ` `int` `n = 5; ` ` ` `vector<pair<` `int` `, ` `int` `> > v; ` ` ` `v.push_back(make_pair(0, 0)); ` ` ` `v.push_back(make_pair(0, 2)); ` ` ` `v.push_back(make_pair(2, 0)); ` ` ` `v.push_back(make_pair(2, 2)); ` ` ` `v.push_back(make_pair(0, 1)); ` ` ` ` ` `// Function call ` ` ` `countOfSquares(v, n); ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

**Output:**

1

**Performance Analysis:**

**Time Complexity:**As in the above approach, there are two loops which takes O(N^{2}) time, Hence the Time Complexity will be**O(N**.^{2})**Auxiliary Space Complexity:**As in the above approach, there is extra space used, Hence the auxiliary space complexity will be**O(N)**.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.

## Recommended Posts:

- Program to check if the points are parallel to X axis or Y axis
- Count rectangles generated in a given rectangle by lines drawn parallel to X and Y axis from a given set of points
- Check if possible to move from given coordinate to desired coordinate
- Count of Right-Angled Triangle formed from given N points whose base or perpendicular are parallel to X or Y axis
- Area of the largest rectangle formed by lines parallel to X and Y axis from given set of points
- Count squares possible from M and N straight lines parallel to X and Y axis respectively
- Number of lines from given N points not parallel to X or Y axis
- Find the equation of plane which passes through two points and parallel to a given axis
- Maximum Squares possible parallel to both axes from N distinct points
- Find the point on X-axis from given N points having least Sum of Distances from all other points
- Minimum number of points to be removed to get remaining points on one side of axis
- Count squares of unique dimensions possible from given Straight Lines parallel to the axes
- Maximum distance between two points in coordinate plane using Rotating Caliper's Method
- Count of rectangles possible from N and M straight lines parallel to X and Y axis respectively
- Missing vertex among N axis-parallel rectangles
- Find Four points such that they form a square whose sides are parallel to x and y axes
- Find whether only two parallel lines contain all coordinates points or not
- Count of obtuse angles in a circle with 'k' equidistant points between 2 given points
- Minimum distance to visit given K points on X-axis after starting from the origin
- Lexicographically Kth smallest way to reach given coordinate from origin

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.