Related Articles
Count of quadruplets with given Sum
• Last Updated : 07 May, 2019

Given four arrays containing integer elements and an integer sum, the task is to count the quadruplets such that each element is chosen from a different array and the sum of all the four elements is equal to the given sum.

Examples:

Input: P[] = {0, 2}, Q[] = {-1, -2}, R[] = {2, 1}, S[] = {2, -1}, sum = 0
Output: 2
(0, -1, 2, -1) and (2, -2, 1, -1) are the required quadruplets.

Input: P[] = {1, -1, 2, 3, 4}, Q[] = {3, 2, 4}, R[] = {-2, -1, 2, 1}, S[] = {4, -1}, sum = 3
Output: 10

Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: Generate all possible quadruplets and calculate the sum of every quadruplets. Count all such quadruplets whose sum is equal to the given sum.

Below is the implementation of the above approach:

C++

 // C++ implementation of the approach #include using namespace std;    // Function to return the count of the required quadruplets int countQuadruplets(int arr1[], int n1, int arr2[], int n2,                      int arr3[], int n3, int arr4[], int n4, int sum) {        // To store the count of required quadruplets     int cnt = 0;        // For arr1[]     for (int i = 0; i < n1; i++) {            // For arr2[]         for (int j = 0; j < n2; j++) {                // For arr3[]             for (int k = 0; k < n3; k++) {                    // For arr4[]                 for (int l = 0; l < n4; l++) {                        // If current quadruplet has the required sum                     if (arr1[i] + arr2[j] + arr3[k] + arr4[l] == sum) {                         cnt++;                     }                 }             }         }     }        return cnt; }    // Driver code int main() {        int arr1[] = { 0, 2 };     int arr2[] = { -1, -2 };     int arr3[] = { 2, 1 };     int arr4[] = { 2, -1 };     int sum = 0;     int n1 = sizeof(arr1) / sizeof(arr1[0]);     int n2 = sizeof(arr2) / sizeof(arr2[0]);     int n3 = sizeof(arr3) / sizeof(arr3[0]);     int n4 = sizeof(arr4) / sizeof(arr4[0]);        cout << countQuadruplets(arr1, n1, arr2, n2, arr3, n3, arr4, n4, sum);        return 0; }

Java

 // Java program to implement // the above approach    class GFG  {        // Function to return the count of the required quadruplets static int countQuadruplets(int arr1[], int n1, int arr2[], int n2,                     int arr3[], int n3, int arr4[], int n4, int sum) {        // To store the count of required quadruplets     int cnt = 0;        // For arr1[]     for (int i = 0; i < n1; i++)     {            // For arr2[]         for (int j = 0; j < n2; j++)         {                // For arr3[]             for (int k = 0; k < n3; k++)              {                    // For arr4[]                 for (int l = 0; l < n4; l++)                  {                        // If current quadruplet has the required sum                     if (arr1[i] + arr2[j] + arr3[k] + arr4[l] == sum)                     {                         cnt++;                     }                 }             }         }     }        return cnt; }    // Driver code public static void main(String[] args) {     int arr1[] = { 0, 2 };     int arr2[] = { -1, -2 };     int arr3[] = { 2, 1 };     int arr4[] = { 2, -1 };     int sum = 0;     int n1 = arr1.length;     int n2 = arr2.length;     int n3 = arr3.length;     int n4 = arr4.length;     System.out.println(countQuadruplets(arr1, n1, arr2, n2,                                     arr3, n3, arr4, n4, sum));    } }    // This code contributed by Rajput-Ji

Python3

 # Python implementation of the approach    # Function to return the count of the required quadruplets def countQuadruplets(P, Q, R, S, sum):            # To store the count of required quadruplets     cnt = 0            # Using four loops generate all possible quadruplets     for elem1 in P:         for elem2 in Q:             for elem3 in R:                 for elem4 in S:                     if elem1 + elem2 + elem3 + elem4 == sum:                         cnt = cnt + 1     return cnt    # Driver code P = [ 0, 2] Q = [-1, -2] R = [2, 1] S = [ 2, -1] sum = 0    print(countQuadruplets(P, Q, R, S, sum))

C#

 // C# program to implement // the above approach using System;    class GFG {    // Function to return the count of the required quadruplets static int countQuadruplets(int []arr1, int n1, int []arr2, int n2,                     int []arr3, int n3, int []arr4, int n4, int sum) {        // To store the count of required quadruplets     int cnt = 0;        // For arr1[]     for (int i = 0; i < n1; i++)     {            // For arr2[]         for (int j = 0; j < n2; j++)         {                // For arr3[]             for (int k = 0; k < n3; k++)              {                    // For arr4[]                 for (int l = 0; l < n4; l++)                  {                        // If current quadruplet has the required sum                     if (arr1[i] + arr2[j] + arr3[k] + arr4[l] == sum)                     {                         cnt++;                     }                 }             }         }     }        return cnt; }    // Driver code static public void Main () {            int []arr1 = { 0, 2 };     int []arr2 = { -1, -2 };     int []arr3 = { 2, 1 };     int []arr4 = { 2, -1 };     int sum = 0;     int n1 = arr1.Length;     int n2 = arr2.Length;     int n3 = arr3.Length;     int n4 = arr4.Length;     Console.WriteLine(countQuadruplets(arr1, n1, arr2, n2,                                     arr3, n3, arr4, n4, sum));    } }    // This code contributed by akt_mit

PHP



Output:

2

Time Complexity: O(n4)
Space Complexity: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :