# Count of quadruplets with given Sum | Set 2

Given four arrays containing integer elements and an integer sum, the task is to count the quadruplets such that each element is chosen from a different array and the sum of all the four elements is equal to the given sum.

Examples:

Input: P[] = {0, 2}, Q[] = {-1, -2}, R[] = {2, 1}, S[] = {2, -1}, sum = 0
Output: 2
(0, -1, 2, -1) and (2, -2, 1, -1) are the required quadruplets.

Input: P[] = {1, -1, 2, 3, 4}, Q[] = {3, 2, 4}, R[] = {-2, -1, 2, 1}, S[] = {4, -1}, sum = 3
Output: 10

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: We pick any two arrays and calculate all possible sums and and keep their counts in a map. Using the remaining two arrays, we calculate all possible sums and check how many times their additive inverse exists in the map which will be the count of required quadruplets.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to return the count of the required quadruplets ` `int` `countQuadruplets(``int` `arr1[], ``int` `n1, ``int` `arr2[], ``int` `n2, ` `                     ``int` `arr3[], ``int` `n3, ``int` `arr4[], ``int` `n4, ``int` `value) ` `{ ` `    ``int` `cnt = 0; ` `    ``unordered_map<``int``, ``int``> sum; ` ` `  `    ``// All possible sums from arr1[] and arr2[] ` `    ``for` `(``int` `i = 0; i < n1; i++) ` `        ``for` `(``int` `j = 0; j < n2; j++) ` `            ``sum[arr1[i] + arr2[j]]++; ` ` `  `    ``// Find the count of quadruplets ` `    ``for` `(``int` `i = 0; i < n3; i++) ` `        ``for` `(``int` `j = 0; j < n4; j++) ` `            ``cnt += sum[value - (arr3[i] + arr4[j])]; ` ` `  `    ``return` `cnt; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` ` `  `    ``int` `arr1[] = { 0, 2 }; ` `    ``int` `arr2[] = { -1, -2 }; ` `    ``int` `arr3[] = { 2, 1 }; ` `    ``int` `arr4[] = { 2, -1 }; ` `    ``int` `sum = 0; ` `    ``int` `n1 = ``sizeof``(arr1) / ``sizeof``(arr1); ` `    ``int` `n2 = ``sizeof``(arr2) / ``sizeof``(arr2); ` `    ``int` `n3 = ``sizeof``(arr3) / ``sizeof``(arr3); ` `    ``int` `n4 = ``sizeof``(arr4) / ``sizeof``(arr4); ` ` `  `    ``cout << countQuadruplets(arr1, n1, arr2, n2, arr3, n3, arr4, n4, sum); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach ` `import` `java.util.*; ` ` `  `class` `GFG { ` ` `  `    ``// Function to return the count of the required quadruplets ` `    ``static` `int` `countQuadruplets(``int` `arr1[], ``int` `n1, ``int` `arr2[], ``int` `n2, ` `                                ``int` `arr3[], ``int` `n3, ``int` `arr4[], ``int` `n4, ``int` `value) ` `    ``{ ` `        ``int` `cnt = ``0``; ` `        ``Map sum = ``new` `HashMap<>(); ` ` `  `        ``// All possible sums from arr1[] and arr2[] ` `        ``for` `(``int` `i = ``0``; i < n1; i++) ` `            ``for` `(``int` `j = ``0``; j < n2; j++) { ` `                ``if` `(sum.containsKey(arr1[i] + arr2[j])) { ` `                    ``sum.put(arr1[i] + arr2[j], sum.get(arr1[i] + arr2[j]) + ``1``); ` `                ``} ` `                ``else` `{ ` `                    ``sum.put(arr1[i] + arr2[j], ``1``); ` `                ``} ` `            ``} ` ` `  `        ``// Find the count of quadruplets ` `        ``for` `(``int` `i = ``0``; i < n3; i++) ` `            ``for` `(``int` `j = ``0``; j < n4; j++) ` `                ``if` `(sum.containsKey(value - (arr3[i] + arr4[j]))) ` `                    ``cnt += sum.get(value - (arr3[i] + arr4[j])); ` ` `  `        ``return` `cnt; ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` `        ``int` `arr1[] = { ``0``, ``2` `}; ` `        ``int` `arr2[] = { -``1``, -``2` `}; ` `        ``int` `arr3[] = { ``2``, ``1` `}; ` `        ``int` `arr4[] = { ``2``, -``1` `}; ` `        ``int` `sum = ``0``; ` `        ``int` `n1 = arr1.length; ` `        ``int` `n2 = arr2.length; ` `        ``int` `n3 = arr3.length; ` `        ``int` `n4 = arr4.length; ` ` `  `        ``System.out.println(countQuadruplets(arr1, n1, arr2, n2, ` `                                            ``arr3, n3, arr4, n4, sum)); ` `    ``} ` `} ` ` `  `// This code contributed by Rajput-Ji `

## Python3

 `# Python 3 implementation of the approach ` ` `  `# Function to return the count  ` `# of the required quadruplets ` `def` `countQuadruplets(arr1, n1, arr2, n2,  ` `                     ``arr3, n3, arr4, n4, value): ` `    ``cnt ``=` `0` `    ``sum` `=` `{i:``0` `for` `i ``in` `range``(``-``4``, ``10``, ``1``)} ` ` `  `    ``# All possible sums from arr1[] and arr2[] ` `    ``for` `i ``in` `range``(n1): ` `        ``for` `j ``in` `range``(n2): ` `            ``sum``[arr1[i] ``+` `arr2[j]] ``+``=` `1` ` `  `    ``# Find the count of quadruplets ` `    ``for` `i ``in` `range``(n3): ` `        ``for` `j ``in` `range``(n4): ` `            ``cnt ``+``=` `sum``[value ``-` `(arr3[i] ``+` `arr4[j])] ` ` `  `    ``return` `cnt ` ` `  `# Driver code ` `if` `__name__ ``=``=` `'__main__'``: ` `    ``arr1 ``=` `[``0``, ``2``] ` `    ``arr2 ``=` `[``-``1``, ``-``2``] ` `    ``arr3 ``=` `[``2``, ``1``] ` `    ``arr4 ``=` `[``2``, ``-``1``] ` `    ``sum` `=` `0` `    ``n1 ``=` `len``(arr1) ` `    ``n2 ``=` `len``(arr2) ` `    ``n3 ``=` `len``(arr3) ` `    ``n4 ``=` `len``(arr4) ` ` `  `    ``print``(countQuadruplets(arr1, n1, arr2, n2,  ` `                           ``arr3, n3, arr4, n4, ``sum``)) ` ` `  `# This code is contributed by ` `# Surendra_Gangwar `

## C#

 `// C# implementation of the approach ` `using` `System; ` `using` `System.Collections.Generic; ` ` `  `class` `GFG { ` ` `  `    ``// Function to return the count of the required quadruplets ` `    ``static` `int` `countQuadruplets(``int``[] arr1, ``int` `n1, ` `                                ``int``[] arr2, ``int` `n2, ` `                                ``int``[] arr3, ``int` `n3, ` `                                ``int``[] arr4, ``int` `n4, ``int` `value) ` `    ``{ ` `        ``int` `cnt = 0; ` `        ``Dictionary<``int``, ``int``> sum = ``new` `Dictionary<``int``, ``int``>(); ` ` `  `        ``// All possible sums from arr1[] and arr2[] ` `        ``for` `(``int` `i = 0; i < n1; i++) ` `            ``for` `(``int` `j = 0; j < n2; j++) { ` `                ``if` `(sum.ContainsKey(arr1[i] + arr2[j])) { ` `                    ``var` `obj = sum[arr1[i] + arr2[j]] + 1; ` `                    ``sum.Remove(arr1[i] + arr2[j]); ` `                    ``sum.Add(arr1[i] + arr2[j], obj); ` `                ``} ` `                ``else` `{ ` `                    ``sum.Add(arr1[i] + arr2[j], 1); ` `                ``} ` `            ``} ` ` `  `        ``// Find the count of quadruplets ` `        ``for` `(``int` `i = 0; i < n3; i++) ` `            ``for` `(``int` `j = 0; j < n4; j++) ` `                ``if` `(sum.ContainsKey(value - (arr3[i] + arr4[j]))) ` `                    ``cnt += sum[value - (arr3[i] + arr4[j])]; ` ` `  `        ``return` `cnt; ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `Main(String[] args) ` `    ``{ ` `        ``int``[] arr1 = { 0, 2 }; ` `        ``int``[] arr2 = { -1, -2 }; ` `        ``int``[] arr3 = { 2, 1 }; ` `        ``int``[] arr4 = { 2, -1 }; ` `        ``int` `sum = 0; ` `        ``int` `n1 = arr1.Length; ` `        ``int` `n2 = arr2.Length; ` `        ``int` `n3 = arr3.Length; ` `        ``int` `n4 = arr4.Length; ` ` `  `        ``Console.WriteLine(countQuadruplets(arr1, n1, arr2, n2, ` `                                           ``arr3, n3, arr4, n4, sum)); ` `    ``} ` `} ` ` `  `/* This code contributed by PrinciRaj1992 */`

## PHP

 ` `

Output:

```2
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

1

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.