Count of quadruplets from range [L, R] having GCD equal to K

Given an integer K and a range [L, R], the task is to count the quadruplet pairs from the given range having gcd equal to K.

Examples:

Input: L = 1, R = 5, K = 3
Output: 1
(3, 3, 3, 3) is the only valid quadruplet with gcd = 3

Input: L = 2, R = 24, K = 5
Output: 239

Naive approach: We can iterate over all the numbers with four loops and for every quadruplet pair check whether its gcd is equal to K.



Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
  
  
// Function to return the count
// of quadruplets having gcd = k
int countQuadruplets(int l, int r, int k)
{
  
    // To store the required count
    int count = 0;
  
    // Check every quadruplet pair
    // whether its gcd is k
    for (int u = l; u <= r; u++) {
        for (int v = l; v <= r; v++) {
            for (int w = l; w <= r; w++) {
                for (int x = l; x <= r; x++) {
                    if (__gcd(__gcd(u, v), __gcd(w, x)) == k)
                        count++;
                }
            }
        }
    }
  
    // Return the required count
    return count;
}
  
// Driver code
int main()
{
    int l = 1, r = 10, k = 2;
  
    cout << countQuadruplets(l, r, k);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
import java.io.*;
  
class GFG {
  
    // Function to return
    // the gcd of a and b
    static int gcd(int a, int b)
    {
        if (b == 0)
            return a;
        return gcd(b, a % b);
    }
  
    // Function to return the count
    // of quadruplets having gcd = k
    static int countQuadruplets(int l, int r, int k)
    {
  
        // To store the required count
        int count = 0;
  
        // Check every quadruplet pair
        // whether its gcd is k
        for (int u = l; u <= r; u++) {
            for (int v = l; v <= r; v++) {
                for (int w = l; w <= r; w++) {
                    for (int x = l; x <= r; x++) {
                        if (gcd(gcd(u, v), gcd(w, x)) == k)
                            count++;
                    }
                }
            }
        }
  
        // Return the required count
        return count;
    }
  
    // Driver code
    public static void main(String[] args)
    {
  
        int l = 1, r = 10, k = 2;
  
        System.out.println(countQuadruplets(l, r, k));
    }
}
  
// This code is contributed by jit_t.

chevron_right


Python 3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 implementation of the approach
from math import gcd
  
# Function to return the count
# of quadruplets having gcd = k
def countQuadruplets(l, r, k):
      
    # To store the required count
    count = 0
  
    # Check every quadruplet pair
    # whether its gcd is k
    for u in range(l, r + 1 ,1):
        for v in range(l, r + 1, 1):
            for w in range(l, r + 1, 1):
                for x in range(l, r + 1, 1):
                    if (gcd(gcd(u, v), gcd(w, x)) == k):
                        count += 1
  
    # Return the required count
    return count
  
# Driver code
if __name__ == '__main__':
    l = 1
    r = 10
    k = 2
  
    print(countQuadruplets(l, r, k))
      
# This code is contributed 
# by Surendra_Gangwar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
  
class GFG {
  
    // Function to return
    // the gcd of a and b
    static int gcd(int a, int b)
    {
        if (b == 0)
            return a;
        return gcd(b, a % b);
    }
  
    // Function to return the count
    // of quadruplets having gcd = k
    static int countQuadruplets(int l, int r, int k)
    {
  
        // To store the required count
        int count = 0;
  
        // Check every quadruplet pair
        // whether its gcd is k
        for (int u = l; u <= r; u++) {
            for (int v = l; v <= r; v++) {
                for (int w = l; w <= r; w++) {
                    for (int x = l; x <= r; x++) {
                        if (gcd(gcd(u, v), gcd(w, x)) == k)
                            count++;
                    }
                }
            }
        }
  
        // Return the required count
        return count;
    }
  
    // Driver code
    static public void Main()
    {
        int l = 1, r = 10, k = 2;
        Console.WriteLine(countQuadruplets(l, r, k));
    }
}
  
// This code is contributed by ajit.

chevron_right


Output:

607

Time Complexity: O((r – l)4)

Efficient approach:

  1. Find the GCD of every possible pair (x, y) in the given range.
  2. Count the frequencies of every possible GCD value.
  3. After that if the GCD value of two numbers is k then increment count by frequency[i] * frequency[j].

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <iostream>
using namespace std;
  
// Function to return
// the gcd of a and b
int gcd(int a, int b)
{
    if (b == 0)
        return a;
    return gcd(b, a % b);
}
  
// Function to return the count
// of quadruplets having gcd = k
int countQuadruplets(int l, int r, int k)
{
  
    int frequency[r + 1] = { 0 };
  
    // Count the frequency of every possible gcd
    // value in the range
    for (int i = l; i <= r; i++) {
        for (int j = l; j <= r; j++) {
            frequency[gcd(i, j)]++;
        }
    }
  
    // To store the required count
    long long answer = 0;
  
    // Calculate the answer using frequency values
    for (int i = 1; i <= r; i++) {
        for (int j = 1; j <= r; j++) {
            if (gcd(i, j) == k) {
                answer += (frequency[i] * frequency[j]);
            }
        }
    }
  
    // Return the required count
    return answer;
}
  
// Driver code
int main()
{
    int l = 1, r = 10, k = 2;
  
    cout << countQuadruplets(l, r, k);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach 
class GFG
{
      
// Function to return 
// the gcd of a and b 
static int gcd(int a, int b) 
    if (b == 0
        return a; 
    return gcd(b, a % b); 
  
// Function to return the count 
// of quadruplets having gcd = k 
static int countQuadruplets(int l, int r, int k) 
  
    int frequency[]= new int[r + 1] ; 
  
    // Count the frequency of every possible gcd 
    // value in the range 
    for (int i = l; i <= r; i++)
    
        for (int j = l; j <= r; j++) 
        
            frequency[gcd(i, j)]++; 
        
    
  
    // To store the required count 
    long answer = 0
  
    // Calculate the answer using frequency values 
    for (int i = 1; i <= r; i++)
    
        for (int j = 1; j <= r; j++) 
        
            if (gcd(i, j) == k) 
            
                answer += (frequency[i] * frequency[j]); 
            
        
    
  
    // Return the required count 
    return (int)answer; 
  
// Driver code 
public static void main(String args[])
    int l = 1, r = 10, k = 2
  
    System.out.println(countQuadruplets(l, r, k)); 
}
  
// This code is contributed by Arnab Kundu

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
  
# Function to return
# the gcd of a and b
def gcd(a, b):
    if (b == 0):
        return a;
    return gcd(b, a % b);
  
# Function to return the count
# of quadruplets having gcd = k
def countQuadruplets(l, r, k):
    frequency = [0] * (r + 1);
  
    # Count the frequency of every possible gcd
    # value in the range
    for i in range(l, r + 1):
        for j in range(l, r + 1):
            frequency[gcd(i, j)] += 1;
  
    # To store the required count
    answer = 0;
  
    # Calculate the answer using frequency values
    for i in range(l, r + 1):
        for j in range(l, r + 1):
            if (gcd(i, j) == k):
                answer += (frequency[i] * frequency[j]);
  
    # Return the required count
    return answer;
  
# Driver code
if __name__ == '__main__':
    l, r, k = 1, 10, 2;
  
    print(countQuadruplets(l, r, k));
  
# This code is contributed by Rajput-Ji

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach 
using System;
  
class GFG
{
          
// Function to return 
// the gcd of a and b 
static int gcd(int a, int b) 
    if (b == 0) 
        return a; 
    return gcd(b, a % b); 
  
// Function to return the count 
// of quadruplets having gcd = k 
static int countQuadruplets(int l, int r, int k) 
  
    int []frequency= new int[r + 1] ; 
  
    // Count the frequency of every possible gcd 
    // value in the range 
    for (int i = l; i <= r; i++)
    
        for (int j = l; j <= r; j++) 
        
            frequency[gcd(i, j)]++; 
        
    
  
    // To store the required count 
    long answer = 0; 
  
    // Calculate the answer using frequency values 
    for (int i = 1; i <= r; i++)
    
        for (int j = 1; j <= r; j++) 
        
            if (gcd(i, j) == k) 
            
                answer += (frequency[i] * frequency[j]); 
            
        
    
  
    // Return the required count 
    return (int)answer; 
  
// Driver code 
static public void Main ()
{
    int l = 1, r = 10, k = 2; 
    Console.WriteLine(countQuadruplets(l, r, k)); 
}
  
// This code is contributed by @ajit_00023

chevron_right


Output:

607

Time Complexity: O((r – l)2)

competitive-programming-img




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.