Skip to content
Related Articles

Related Articles

Improve Article

Count of Prime Nodes of a Singly Linked List

  • Difficulty Level : Basic
  • Last Updated : 28 May, 2021

Given a singly linked list containing N nodes, the task is to find the total count of prime numbers.

Examples: 

Input: List = 15 -> 5 -> 6 -> 10 -> 17
Output: 2
5 and 17 are the prime nodes

Input: List = 29 -> 3 -> 4 -> 2 -> 9
Output: 3
2, 3 and 29 are the prime nodes
 

Approach: The idea is to traverse the linked list to the end and check if the current node is prime or not. If YES, increment the count by 1 and keep doing the same until all the nodes get traversed. 

Below is the implementation of above approach:  

C++




// C++ implementation to find count of prime numbers
// in the singly linked list
#include <bits/stdc++.h>
using namespace std;
 
// Node of the singly linked list
struct Node {
    int data;
    Node* next;
};
 
// Function to insert a node at the beginning
// of the singly Linked List
void push(Node** head_ref, int new_data)
{
    Node* new_node = new Node;
    new_node->data = new_data;
    new_node->next = (*head_ref);
    (*head_ref) = new_node;
}
 
// Function to check if a number is prime
bool isPrime(int n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
 
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    for (int i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
 
    return true;
}
 
// Function to find count of prime
// nodes in a linked list
int countPrime(Node** head_ref)
{
    int count = 0;
    Node* ptr = *head_ref;
 
    while (ptr != NULL) {
        // If current node is prime
        if (isPrime(ptr->data)) {
            // Update count
            count++;
        }
        ptr = ptr->next;
    }
 
    return count;
}
 
// Driver program
int main()
{
    // start with the empty list
    Node* head = NULL;
 
    // create the linked list
    // 15 -> 5 -> 6 -> 10 -> 17
    push(&head, 17);
    push(&head, 10);
    push(&head, 6);
    push(&head, 5);
    push(&head, 15);
 
    // Function call to print require answer
    cout << "Count of prime nodes = "
         << countPrime(&head);
 
    return 0;
}

Java




// Java implementation to find count of prime numbers
// in the singly linked list
class solution
{
 
// Node of the singly linked list
static class Node {
    int data;
    Node  next;
}
 
// Function to insert a node at the beginning
// of the singly Linked List
static Node push(Node   head_ref, int new_data)
{
    Node  new_node = new Node();
    new_node.data = new_data;
    new_node.next = ( head_ref);
    ( head_ref) = new_node;
    return head_ref;
}
 
// Function to check if a number is prime
static boolean isPrime(int n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
 
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    for (int i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
 
    return true;
}
 
// Function to find count of prime
// nodes in a linked list
static int countPrime(Node   head_ref)
{
    int count = 0;
    Node  ptr =  head_ref;
 
    while (ptr != null) {
        // If current node is prime
        if (isPrime(ptr.data)) {
            // Update count
            count++;
        }
        ptr = ptr.next;
    }
 
    return count;
}
 
// Driver program
public static void main(String args[])
{
    // start with the empty list
    Node  head = null;
 
    // create the linked list
    // 15 . 5 . 6 . 10 . 17
    head=push(head, 17);
    head=push(head, 10);
    head=push(head, 6);
    head=push(head, 5);
    head=push(head, 15);
 
    // Function call to print require answer
    System.out.print( "Count of prime nodes = "+ countPrime(head));
 
}
}
 
// This code is contributed by Arnab Kundu

Python3




# Python3 implementation to find count of
# prime numbers in the singly linked list
 
# Function to check if a number is prime
def isPrime(n):
 
    # Corner cases
    if n <= 1:
        return False
    if n <= 3:
        return True
 
    # This is checked so that we can skip
    # middle five numbers in below loop
    if n % 2 == 0 or n % 3 == 0:
        return False
     
    i = 5
    while i * i <= n:
        if n % i == 0 or n % (i + 2) == 0:
            return False
        i += 6
 
    return True
 
# Link list node
class Node:
     
    def __init__(self, data, next):
        self.data = data
        self.next = next
         
class LinkedList:
     
    def __init__(self):
        self.head = None
     
    # Push a new node on the front of the list.    
    def push(self, new_data):
        new_node = Node(new_data, self.head)
        self.head = new_node
 
    # Function to find count of prime
    # nodes in a linked list
    def countPrime(self):
     
        count = 0
        ptr = self.head
     
        while ptr != None:
             
            # If current node is prime
            if isPrime(ptr.data):
                 
                # Update count
                count += 1
             
            ptr = ptr.next
     
        return count
 
# Driver Code
if __name__ == "__main__":
 
    # Start with the empty list
    linkedlist = LinkedList()
 
    # create the linked list
    # 15 -> 5 -> 6 -> 10 -> 17
    linkedlist.push(17)
    linkedlist.push(10)
    linkedlist.push(6)
    linkedlist.push(5)
    linkedlist.push(15)
 
    # Function call to print require answer
    print("Count of prime nodes =",
           linkedlist.countPrime())
 
# This code is contributed by Rituraj Jain

C#




// C# implementation to find count of prime numbers
// in the singly linked list
using System;
 
class GFG
{
 
// Node of the singly linked list
public class Node
{
    public int data;
    public Node next;
}
 
// Function to insert a node at the beginning
// of the singly Linked List
static Node push(Node head_ref, int new_data)
{
    Node new_node = new Node();
    new_node.data = new_data;
    new_node.next = ( head_ref);
    ( head_ref) = new_node;
    return head_ref;
}
 
// Function to check if a number is prime
static bool isPrime(int n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
 
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    for (int i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
 
    return true;
}
 
// Function to find count of prime
// nodes in a linked list
static int countPrime(Node head_ref)
{
    int count = 0;
    Node ptr = head_ref;
 
    while (ptr != null)
    {
        // If current node is prime
        if (isPrime(ptr.data))
        {
            // Update count
            count++;
        }
        ptr = ptr.next;
    }
 
    return count;
}
 
// Driver code
public static void Main(String []args)
{
    // start with the empty list
    Node head = null;
 
    // create the linked list
    // 15 . 5 . 6 . 10 . 17
    head=push(head, 17);
    head=push(head, 10);
    head=push(head, 6);
    head=push(head, 5);
    head=push(head, 15);
 
    // Function call to print require answer
    Console.Write( "Count of prime nodes = "+ countPrime(head));
}
}
 
// This code has been contributed by 29AjayKumar

Javascript




<script>
 
// Javascript implementation to find count
// of prime numbers in the singly linked list    
 
// Node of the singly linked list
class Node
{
    constructor(val)
    {
        this.data = val;
        this.next = null;
    }
}
 
// Function to insert a node at the beginning
// of the singly Linked List
function push(head_ref, new_data)
{
    var new_node = new Node();
    new_node.data = new_data;
    new_node.next = (head_ref);
    (head_ref) = new_node;
    return head_ref;
}
 
// Function to check if a number is prime
function isPrime(n)
{
     
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
 
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    for(i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
 
    return true;
}
 
// Function to find count of prime
// nodes in a linked list
function countPrime(head_ref)
{
     
    var count = 0;
    var ptr = head_ref;
 
    while (ptr != null)
    {
         
        // If current node is prime
        if (isPrime(ptr.data))
        {
             
            // Update count
            count++;
        }
        ptr = ptr.next;
    }
    return count;
}
 
// Driver code
 
// Start with the empty list
var head = null;
 
// Create the linked list
// 15 . 5 . 6 . 10 . 17
head = push(head, 17);
head = push(head, 10);
head = push(head, 6);
head = push(head, 5);
head = push(head, 15);
 
// Function call to prvar require answer
document.write("Count of prime nodes = " +
               countPrime(head));
 
// This code is contributed by gauravrajput1
 
</script>
Output: 



Count of prime nodes = 2

 

Time Complexity: O(N*sqrt(P)), where N is length of the LinkedList and P is the maximum element in the List
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :