Open In App

Count of prime factors of N to be added at each step to convert N to M

Given two integers N and M, the task is to find out smallest number of operations required to convert N to M. Each operation involves adding one of the prime factors of the current value of N. If it is possible to obtain M, print the number of operations. Otherwise, print -1.

Examples: 



Input: N = 6, M = 10 
Output:
Explanation: 
Prime factors of 6 are [2, 3]. 
Adding 2 to N, we obtain 8. 
The prime factor of 8 is [2]. 
Adding 2 to N, we obtain 10, which is the desired result. 
Hence, total steps = 2

Input: N = 2, M = 3 
Output: -1 
Explanation: 
There is no way to convert N = 2 to M = 3. 



Approach: 
The problem can be solved by using BFS to obtain minimum steps to reach M and Sieve of Eratosthenes to precompute prime numbers. 
Follow the steps below to solve the problem: 

Below is the implementation of the above approach: 




// C++ program to find the minimum
// steps required to convert a number
// N to M.
#include <bits/stdc++.h>
using namespace std;
 
// Array to store shortest prime
// factor of every integer
int spf[100009];
 
// Function to precompute
// shortest prime factors
void sieve()
{
    memset(spf, -1, 100005);
    for (int i = 2; i * i <= 100005; i++) {
        for (int j = i; j <= 100005; j += i) {
            if (spf[j] == -1) {
                spf[j] = i;
            }
        }
    }
}
 
// Function to insert distinct prime factors
// of every integer into a set
set<int> findPrimeFactors(set<int> s,
                          int n)
{
    // Store distinct prime
    // factors
    while (n > 1) {
        s.insert(spf[n]);
        n /= spf[n];
    }
    return s;
}
 
// Function to return minimum
// steps using BFS
int MinimumSteps(int n, int m)
{
 
    // Queue of pairs to store
    // the current number and
    // distance from root.
    queue<pair<int, int> > q;
 
    // Set to store distinct
    // prime factors
    set<int> s;
 
    // Run BFS
    q.push({ n, 0 });
    while (!q.empty()) {
 
        int newNum = q.front().first;
        int distance = q.front().second;
 
        q.pop();
 
        // Find out the prime factors of newNum
        set<int> k = findPrimeFactors(s,
                                      newNum);
 
        // Iterate over every prime
        // factor of newNum.
        for (auto i : k) {
 
            // If M is obtained
            if (newNum == m) {
 
                // Return number of
                // operations
                return distance;
            }
 
            // If M is exceeded
            else if (newNum > m) {
                break;
            }
 
            // Otherwise
            else {
 
                // Update and store the new
                // number obtained by prime factor
                q.push({ newNum + i,
                         distance + 1 });
            }
        }
    }
 
    // If M cannot be obtained
    return -1;
}
 
// Driver code
int main()
{
    int N = 7, M = 16;
 
    sieve();
 
    cout << MinimumSteps(N, M);
}




// Java program to find the minimum
// steps required to convert a number
// N to M.
import java.util.*;
 
class GFG{
     
static class pair
{
    int first, second;
     
    public pair(int first, int second) 
    {
        this.first = first;
        this.second = second;
    }   
}
 
// Array to store shortest prime
// factor of every integer
static int []spf = new int[100009];
 
// Function to precompute
// shortest prime factors
static void sieve()
{
    for(int i = 0; i < 100005; i++)
        spf[i] = -1;
         
    for(int i = 2; i * i <= 100005; i++)
    {
        for(int j = i; j <= 100005; j += i)
        {
            if (spf[j] == -1)
            {
                spf[j] = i;
            }
        }
    }
}
 
// Function to insert distinct prime factors
// of every integer into a set
static HashSet<Integer> findPrimeFactors(HashSet<Integer> s,
                                         int n)
{
     
    // Store distinct prime
    // factors
    while (n > 1)
    {
        s.add(spf[n]);
        n /= spf[n];
    }
    return s;
}
 
// Function to return minimum
// steps using BFS
static int MinimumSteps(int n, int m)
{
 
    // Queue of pairs to store
    // the current number and
    // distance from root.
    Queue<pair > q = new LinkedList<>();
 
    // Set to store distinct
    // prime factors
    HashSet<Integer> s = new HashSet<Integer>();
 
    // Run BFS
    q.add(new pair(n, 0));
     
    while (!q.isEmpty())
    {
        int newNum = q.peek().first;
        int distance = q.peek().second;
 
        q.remove();
 
        // Find out the prime factors of newNum
        HashSet<Integer> k = findPrimeFactors(s,
                                      newNum);
 
        // Iterate over every prime
        // factor of newNum.
        for(int i : k)
        {
             
            // If M is obtained
            if (newNum == m)
            {
 
                // Return number of
                // operations
                return distance;
            }
 
            // If M is exceeded
            else if (newNum > m)
            {
                break;
            }
 
            // Otherwise
            else
            {
                 
                // Update and store the new
                // number obtained by prime factor
                q.add(new pair(newNum + i,
                             distance + 1 ));
            }
        }
    }
 
    // If M cannot be obtained
    return -1;
}
 
// Driver code
public static void main(String[] args)
{
    int N = 7, M = 16;
 
    sieve();
 
    System.out.print(MinimumSteps(N, M));
}
}
 
// This code is contributed by Amit Katiyar




# Python3 program to find the minimum
# steps required to convert a number
# N to M.
  
# Array to store shortest prime
# factor of every integer
spf = [-1 for i in range(100009)];
  
# Function to precompute
# shortest prime factors
def sieve():
 
    i=2
     
    while(i * i <= 100006):
        for j in range(i, 100006, i):
            if (spf[j] == -1):
                spf[j] = i;
        i += 1
         
# Function to append distinct prime factors
# of every integer into a set
def findPrimeFactors(s, n):
 
    # Store distinct prime
    # factors
    while (n > 1):
        s.add(spf[n]);
        n //= spf[n];
     
    return s;
 
# Function to return minimum
# steps using BFS
def MinimumSteps( n, m):
  
    # Queue of pairs to store
    # the current number and
    # distance from root.
    q = []
  
    # Set to store distinct
    # prime factors
    s = set()
  
    # Run BFS
    q.append([ n, 0 ])
     
    while (len(q) != 0):
  
        newNum = q[0][0]
        distance = q[0][1]
 
        q.pop(0);
  
        # Find out the prime factors of newNum
        k = findPrimeFactors(s, newNum);
  
        # Iterate over every prime
        # factor of newNum.
        for i in k:
  
            # If M is obtained
            if (newNum == m):
  
                # Return number of
                # operations
                return distance;
  
            # If M is exceeded
            elif (newNum > m):
                break;
  
            # Otherwise
            else:
  
                # Update and store the new
                # number obtained by prime factor
                q.append([ newNum + i, distance + 1 ]);
             
    # If M cannot be obtained
    return -1;
 
# Driver code
if __name__=='__main__':
 
    N = 7
    M = 16;
  
    sieve();
  
    print( MinimumSteps(N, M))
 
  # This code is contributed by rutvik_56




// C# program to find the minimum
// steps required to convert a number
// N to M.
using System;
using System.Collections.Generic;
 
class GFG{
     
class pair
{
    public int first, second;
     
    public pair(int first, int second) 
    {
        this.first = first;
        this.second = second;
    }   
}
 
// Array to store shortest prime
// factor of every integer
static int []spf = new int[100009];
 
// Function to precompute
// shortest prime factors
static void sieve()
{
    for(int i = 0; i < 100005; i++)
        spf[i] = -1;
         
    for(int i = 2; i * i <= 100005; i++)
    {
        for(int j = i; j <= 100005; j += i)
        {
            if (spf[j] == -1)
            {
                spf[j] = i;
            }
        }
    }
}
 
// Function to insert distinct prime factors
// of every integer into a set
static HashSet<int> findPrimeFactors(HashSet<int> s,
                                             int n)
{
     
    // Store distinct prime
    // factors
    while (n > 1)
    {
        s.Add(spf[n]);
        n /= spf[n];
    }
    return s;
}
 
// Function to return minimum
// steps using BFS
static int MinimumSteps(int n, int m)
{
     
    // Queue of pairs to store
    // the current number and
    // distance from root.
    Queue<pair> q = new Queue<pair>();
 
    // Set to store distinct
    // prime factors
    HashSet<int> s = new HashSet<int>();
 
    // Run BFS
    q.Enqueue(new pair(n, 0));
     
    while (q.Count != 0)
    {
        int newNum = q.Peek().first;
        int distance = q.Peek().second;
 
        q.Dequeue();
 
        // Find out the prime factors of newNum
        HashSet<int> k = findPrimeFactors(s,
                                          newNum);
 
        // Iterate over every prime
        // factor of newNum.
        foreach(int i in k)
        {
             
            // If M is obtained
            if (newNum == m)
            {
 
                // Return number of
                // operations
                return distance;
            }
 
            // If M is exceeded
            else if (newNum > m)
            {
                break;
            }
 
            // Otherwise
            else
            {
                 
                // Update and store the new
                // number obtained by prime factor
                q.Enqueue(new pair(newNum + i,
                                 distance + 1));
            }
        }
    }
 
    // If M cannot be obtained
    return -1;
}
 
// Driver code
public static void Main(String[] args)
{
    int N = 7, M = 16;
 
    sieve();
 
    Console.Write(MinimumSteps(N, M));
}
}
 
// This code is contributed by Princi Singh




<script>
 
// JavaScript program to find the minimum
// steps required to convert a number
// N to M.
     
class pair
{
    constructor(first, second)
    {
        this.first = first;
        this.second = second;
    }
}
 
// Array to store shortest prime
// factor of every integer
var spf = Array(100009).fill(0);
 
// Function to precompute
// shortest prime factors
function sieve()
{
    for(var i = 0; i < 100005; i++)
        spf[i] = -1;
         
    for(var i = 2; i * i <= 100005; i++)
    {
        for(var j = i; j <= 100005; j += i)
        {
            if (spf[j] == -1)
            {
                spf[j] = i;
            }
        }
    }
}
 
// Function to insert distinct prime factors
// of every integer into a set
function findPrimeFactors(s, n)
{
     
    // Store distinct prime
    // factors
    while (n > 1)
    {
        s.add(spf[n]);
        n /= spf[n];
    }
    return s;
}
 
// Function to return minimum
// steps using BFS
function MinimumSteps(n, m)
{
     
    // Queue of pairs to store
    // the current number and
    // distance from root.
    var q = [];
 
    // Set to store distinct
    // prime factors
    var s = new Set();
 
    // Run BFS
    q.push(new pair(n, 0));
     
    while (q.length != 0)
    {
        var newNum = q[0].first;
        var distance = q[0].second;
 
        q.shift();
 
        // Find out the prime factors of newNum
        var k = findPrimeFactors(s,
                                          newNum);
 
        // Iterate over every prime
        // factor of newNum.
        for(var i of k)
        {
             
            // If M is obtained
            if (newNum == m)
            {
 
                // Return number of
                // operations
                return distance;
            }
 
            // If M is exceeded
            else if (newNum > m)
            {
                break;
            }
 
            // Otherwise
            else
            {
                 
                // Update and store the new
                // number obtained by prime factor
                q.push(new pair(newNum + i,
                                 distance + 1));
            }
        }
    }
 
    // If M cannot be obtained
    return -1;
}
 
// Driver code
var N = 7, M = 16;
sieve();
document.write(MinimumSteps(N, M));
 
 
</script>

Output: 
2

 

Time Complexity: O(N* log(N)) 
Auxiliary Space: O(N)
 


Article Tags :