Given an N x M matrix of integers, the task is to count the number of palindromic pluses in the array.
Palindromic plus is formed when a palindromic sub-row and palindromic sub-column cross each other at the middle element.
Examples:
Input: matrix = [[1, 2, 1], [2, 3, 2], [3, 2, 1]]
Output: 1
Explanation:
Palindromic row from (1, 0) – > (1, 2) and Palindromic column (0, 1) -> (2, 1) form a palindromic plus.
Input: matrix = [[1, 2, 1, 3], [2, 3, 2, 3], [3, 2, 1, 4]
Output: 2
Explanation:
The palindromic pluses in the given matrix are:


Approach:
To solve the problem, follow the steps below:
- Traverse all the cells that can be the center of a palindromic plus, that is, all the cells apart from the ones belonging to the first and last row and columns.
- For all these cells (i, j), check if a[i][j – 1] is equal to a[i][j + 1] and a[i – 1][j] is equal to a[i + 1][j]. If both the conditions satisfies, then increase the count of palindromic pluses.
- Print the final count of palindromic pluses.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int countPalindromicPlus(
int n, int m,
vector<vector< int > >& a)
{
int i, j, k;
int count = 0;
for (i = 1; i < n - 1; i++) {
for (j = 1; j < m - 1; j++) {
if (a[i + 1][j] == a[i - 1][j]
&& a[i][j - 1] == a[i][j + 1])
++count;
}
}
return count;
}
int main()
{
int n = 4, m = 4;
vector<vector< int > > a
= { { 1, 2, 1, 3 },
{ 2, 3, 2, 3 },
{ 3, 2, 1, 2 },
{ 2, 3, 2, 3 } };
cout << countPalindromicPlus(
n, m, a)
<< endl;
return 0;
}
|
Java
class GFG{
static int countPalindromicPlus( int n, int m,
int [][]a)
{
int i, j;
int count = 0 ;
for (i = 1 ; i < n - 1 ; i++)
{
for (j = 1 ; j < m - 1 ; j++)
{
if (a[i + 1 ][j] == a[i - 1 ][j] &&
a[i][j - 1 ] == a[i][j + 1 ])
++count;
}
}
return count;
}
public static void main(String[] args)
{
int n = 4 , m = 4 ;
int [][]a = { { 1 , 2 , 1 , 3 },
{ 2 , 3 , 2 , 3 },
{ 3 , 2 , 1 , 2 },
{ 2 , 3 , 2 , 3 } };
System.out.print(
countPalindromicPlus(n, m, a) + "\n" );
}
}
|
Python3
def countPalindromicPlus(n, m, a):
i, j, k = 0 , 0 , 0
count = 0
for i in range ( 1 , n - 1 ):
for j in range ( 1 , m - 1 ):
if (a[i + 1 ][j] = = a[i - 1 ][j]
and a[i][j - 1 ] = = a[i][j + 1 ]):
count + = 1
return count
if __name__ = = '__main__' :
n = 4
m = 4
a = [[ 1 , 2 , 1 , 3 ],
[ 2 , 3 , 2 , 3 ],
[ 3 , 2 , 1 , 2 ],
[ 2 , 3 , 2 , 3 ]]
print (countPalindromicPlus(n, m, a))
|
C#
using System;
class GFG{
static int countPalindromicPlus( int n, int m,
int [,]a)
{
int i, j;
int count = 0;
for (i = 1; i < n - 1; i++)
{
for (j = 1; j < m - 1; j++)
{
if (a[i + 1, j] == a[i - 1, j] &&
a[i, j - 1] == a[i, j + 1])
++count;
}
}
return count;
}
public static void Main()
{
int n = 4, m = 4;
int [,]a = {{ 1, 2, 1, 3 },
{ 2, 3, 2, 3 },
{ 3, 2, 1, 2 },
{ 2, 3, 2, 3 }};
Console.Write(
countPalindromicPlus(n, m, a) + "\n" );
}
}
|
Javascript
<script>
function countPalindromicPlus(n, m, a)
{
let i, j;
let count = 0;
for (i = 1; i < n - 1; i++)
{
for (j = 1; j < m - 1; j++)
{
if (a[i + 1][j] == a[i - 1][j] &&
a[i][j - 1] == a[i][j + 1])
++count;
}
}
return count;
}
let n = 4, m = 4;
let a = [ [ 1, 2, 1, 3 ],
[ 2, 3, 2, 3 ],
[ 3, 2, 1, 2 ],
[ 2, 3, 2, 3 ] ];
document.write(countPalindromicPlus(n, m, a) + "</br>" );
</script>
|
Time Complexity: O(N2)
Auxiliary Space: O(1)