Skip to content
Related Articles

Related Articles

Improve Article
Count of pairs in a given range with sum of their product and sum equal to their concatenated number
  • Difficulty Level : Medium
  • Last Updated : 01 Jun, 2021

Given two numbers A and B, the task is to find the count of pairs (X, Y) in range [A, B], such that (X * Y) + (X + Y) is equal to the number formed by concatenation of X and Y
Examples: 
 

Input: A = 1, B = 9 
Output:
Explanation: 
The pairs (1, 9), (2, 9), (3, 9), (4, 9), (5, 9), (6, 9), (7, 9), (8, 9) and (9, 9) are the required pairs.
Input: A = 4, B = 10 
Output:
Explanation: The pairs (4, 9), (5, 9), (6, 9), (7, 9), (8, 9), (9, 9) and (10, 9) satisfy the required condition. 
 

 

Approach : 
We can observe that any number of the form [9, 99, 999, 9999, ….] satisfies the condition with all other values. 
 

Illustration: 
If Y = 9, the required condition is satisfied for all values of X. 
{1*9 + (1 + 9) = 19, 2*9 + (2 + 9) = 29, ……….. 11*9 + (11 + 9) = 119 ….. 
Similarly, for Y = 99, 1*99 + 1 + 99 = 199, 2*99 + 2 + 99 = 299, ……… 
 



Hence, follow the steps below to solve the problems: 
 

  1. Count the number of possible values of Y of the form {9, 99, 999, 9999, ….} in range [A, B] and store in countY
  2. Count the number of possible values of X in the range [A, B] as countX 
     
countX = (B - A + 1)
  1.  
  2. The required count will be the product of possible count of X and Y, i.e. 
     
answer = countX * countY
  1.  

Below is the implementation of the above approach:
 

C++




// C++ program to count
// all the possible pairs
// with X*Y + (X + Y) equal to
// number formed by
// concatenating X and Y
 
#include <bits/stdc++.h>
using namespace std;
 
// Function for counting pairs
int countPairs(int A, int B)
{
 
    int countY = 0,
        countX = (B - A) + 1,
        next_val = 9;
 
    // Count possible values
    // of Y
    while (next_val <= B) {
        if (next_val >= A) {
            countY += 1;
        }
        next_val = next_val * 10 + 9;
    }
 
    return (countX * countY);
}
 
// Driver Code
int main()
{
    int A = 1;
    int B = 16;
    cout << countPairs(A, B);
    return 0;
}

Java




// Java program to count
// all the possible pairs
// with X*Y + (X + Y) equal to
// number formed by
// concatenating X and Y
import java.util.*;
class GFG{
 
// Function for counting pairs
static int countPairs(int A, int B)
{
    int countY = 0,
        countX = (B - A) + 1,
        next_val = 9;
 
    // Count possible values
    // of Y
    while (next_val <= B)
    {
        if (next_val >= A)
        {
            countY += 1;
        }
        next_val = next_val * 10 + 9;
    }
    return (countX * countY);
}
 
// Driver Code
public static void main(String args[])
{
    int A = 1;
    int B = 16;
    System.out.print(countPairs(A, B));
}
}
 
// This code is contributed by Code_Mech

Python3




# Python3 program to count
# all the possible pairs
# with X*Y + (X + Y) equal to
# number formed by
# concatenating X and Y
 
# Function for counting pairs
def countPairs(A, B):
 
    countY = 0
    countX = (B - A) + 1
    next_val = 9
 
    # Count possible values
    # of Y
    while (next_val <= B):
        if (next_val >= A):
            countY += 1
        next_val = next_val * 10 + 9
 
    return (countX * countY)
 
# Driver Code
if __name__ == '__main__':
     
    A = 1
    B = 16
     
    print(countPairs(A, B))
 
# This code is contributed by mohit kumar 29

C#




// C# program to count
// all the possible pairs
// with X*Y + (X + Y) equal to
// number formed by
// concatenating X and Y
using System;
class GFG{
 
// Function for counting pairs
static int countPairs(int A, int B)
{
    int countY = 0,
        countX = (B - A) + 1,
        next_val = 9;
 
    // Count possible values
    // of Y
    while (next_val <= B)
    {
        if (next_val >= A)
        {
            countY += 1;
        }
        next_val = next_val * 10 + 9;
    }
    return (countX * countY);
}
 
// Driver Code
public static void Main()
{
    int A = 1;
    int B = 16;
    Console.Write(countPairs(A, B));
}
}
 
// This code is contributed by Akanksha_Rai

Javascript




<script>
// javascript program to count
// all the possible pairs
// with X*Y + (X + Y) equal to
// number formed by
// concatenating X and Y
 
    // Function for counting pairs
    function countPairs(A , B)
    {
        var countY = 0, countX = (B - A) + 1, next_val = 9;
 
        // Count possible values
        // of Y
        while (next_val <= B)
        {
            if (next_val >= A)
            {
                countY += 1;
            }
            next_val = next_val * 10 + 9;
        }
        return (countX * countY);
    }
 
    // Driver Code
        var A = 1;
        var B = 16;
        document.write(countPairs(A, B));
 
// This code is contributed by todaysgaurav
</script>
Output: 
16

 

Time Complexity: O(log10(B))
Space Complexity: O(1)
 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :