Count of pairs in a given range with sum of their product and sum equal to their concatenated number
Given two numbers A and B, the task is to find the count of pairs (X, Y) in range [A, B], such that (X * Y) + (X + Y) is equal to the number formed by concatenation of X and Y
Examples:
Input: A = 1, B = 9
Output: 9
Explanation:
The pairs (1, 9), (2, 9), (3, 9), (4, 9), (5, 9), (6, 9), (7, 9), (8, 9) and (9, 9) are the required pairs.
Input: A = 4, B = 10
Output: 7
Explanation: The pairs (4, 9), (5, 9), (6, 9), (7, 9), (8, 9), (9, 9) and (10, 9) satisfy the required condition.
Approach :
We can observe that any number of the form [9, 99, 999, 9999, ….] satisfies the condition with all other values.
Illustration:
If Y = 9, the required condition is satisfied for all values of X.
{1*9 + (1 + 9) = 19, 2*9 + (2 + 9) = 29, ……….. 11*9 + (11 + 9) = 119 …..
Similarly, for Y = 99, 1*99 + 1 + 99 = 199, 2*99 + 2 + 99 = 299, ………
Hence, follow the steps below to solve the problems:
- Count the number of possible values of Y of the form {9, 99, 999, 9999, ….} in range [A, B] and store in countY
- Count the number of possible values of X in the range [A, B] as countX
countX = (B - A + 1)
- The required count will be the product of possible count of X and Y, i.e.
answer = countX * countY
Below is the implementation of the above approach:
C++
// C++ program to count // all the possible pairs // with X*Y + (X + Y) equal to // number formed by // concatenating X and Y #include <bits/stdc++.h> using namespace std; // Function for counting pairs int countPairs( int A, int B) { int countY = 0, countX = (B - A) + 1, next_val = 9; // Count possible values // of Y while (next_val <= B) { if (next_val >= A) { countY += 1; } next_val = next_val * 10 + 9; } return (countX * countY); } // Driver Code int main() { int A = 1; int B = 16; cout << countPairs(A, B); return 0; } |
Java
// Java program to count // all the possible pairs // with X*Y + (X + Y) equal to // number formed by // concatenating X and Y import java.util.*; class GFG{ // Function for counting pairs static int countPairs( int A, int B) { int countY = 0 , countX = (B - A) + 1 , next_val = 9 ; // Count possible values // of Y while (next_val <= B) { if (next_val >= A) { countY += 1 ; } next_val = next_val * 10 + 9 ; } return (countX * countY); } // Driver Code public static void main(String args[]) { int A = 1 ; int B = 16 ; System.out.print(countPairs(A, B)); } } // This code is contributed by Code_Mech |
Python3
# Python3 program to count # all the possible pairs # with X*Y + (X + Y) equal to # number formed by # concatenating X and Y # Function for counting pairs def countPairs(A, B): countY = 0 countX = (B - A) + 1 next_val = 9 # Count possible values # of Y while (next_val < = B): if (next_val > = A): countY + = 1 next_val = next_val * 10 + 9 return (countX * countY) # Driver Code if __name__ = = '__main__' : A = 1 B = 16 print (countPairs(A, B)) # This code is contributed by mohit kumar 29 |
C#
// C# program to count // all the possible pairs // with X*Y + (X + Y) equal to // number formed by // concatenating X and Y using System; class GFG{ // Function for counting pairs static int countPairs( int A, int B) { int countY = 0, countX = (B - A) + 1, next_val = 9; // Count possible values // of Y while (next_val <= B) { if (next_val >= A) { countY += 1; } next_val = next_val * 10 + 9; } return (countX * countY); } // Driver Code public static void Main() { int A = 1; int B = 16; Console.Write(countPairs(A, B)); } } // This code is contributed by Akanksha_Rai |
Javascript
<script> // javascript program to count // all the possible pairs // with X*Y + (X + Y) equal to // number formed by // concatenating X and Y // Function for counting pairs function countPairs(A , B) { var countY = 0, countX = (B - A) + 1, next_val = 9; // Count possible values // of Y while (next_val <= B) { if (next_val >= A) { countY += 1; } next_val = next_val * 10 + 9; } return (countX * countY); } // Driver Code var A = 1; var B = 16; document.write(countPairs(A, B)); // This code is contributed by todaysgaurav </script> |
16
Time Complexity: O(log10(B))
Space Complexity: O(1)
Please Login to comment...