# Count of pairs from arrays A and B such that element in A is greater than element in B at that index

• Difficulty Level : Hard
• Last Updated : 25 Oct, 2022

Given two arrays A[] and B[] of size N, the task is to count the maximum number of pairs, where each pair contains one from each array, such that A[i] > B[i]. Also the array A can be rearranged any number of times.

Examples:

Input: A[] = {20, 30, 50}, B[]= {60, 40, 25}
Output:
Explanation:
Initially:
A[0] = 20 < B[0] = 60
A[1] = 30 < B[1] = 40
A[2] = 50 > B[2] = 25
Clearly, this arrangement has only 1 value such that A[i] > B[i].
This array A[] when rearranged to {20, 50, 30}:
A[0] = 20 < B[0] = 60
A[1] = 50 > B[1] = 40
A[2] = 30 > B[2] = 25
2 values follow the condition A[i] > B[i] which is the maximum for these set of arrays.

Input: A[] = {10, 3, 7, 5, 8}, B[] = {8, 6, 2, 5, 9}
Output:
Explanation:
Initially:
A[0] = 10 > B[0] = 8
A[1] = 3 < B[1] = 6
A[2] = 7 > B[2] = 2
A[3] = 5 = B[3] = 5
A[4] = 8 < B[4] = 9
Clearly, this arrangement has only 2 values such that A[i] > B[i].
This array A[] when rearranged to {10, 8, 5, 7, 3}:
A[0] = 10 > B[0] = 8
A[1] = 8 > B[1] = 6
A[2] = 5 > B[2] = 2
A[3] = 7 > B[3] = 5
A[4] = 3 < B[4] = 9
4 values follow the condition A[i] > B[i] which is the maximum for these set of arrays.

Approach: The idea is to use the concept of heap. Since the arrangement of B[] doesn’t matter in the question, we can perform max heap on both the arrays. After performing max heap and storing the values in two different heaps, iterate through the heap corresponding to A[] and B[] to count the number of indices satisfying the given condition A[i] > B[i]

Below is the implementation of the above approach:

## C++14

 `// C++ program to find the maximum count of``// values that follow the given condition``#include``using` `namespace` `std;` `// Function to find the maximum count of``// values that follow the given condition``int` `check(``int` `A[], ``int` `B[], ``int` `N)``{` `    ``// Initializing the max-heap for the array A[]``    ``priority_queue <``int``> pq1,pq2;` `    ``// Adding the values of A[] into max heap``    ``for` `(``int` `i = 0; i < N; i++) {``        ``pq1.push(A[i]);``    ``}` `    ``// Adding the values of B[] into max heap``    ``for` `(``int` `i = 0; i < N; i++) {``        ``pq2.push(B[i]);``    ``}` `    ``// Counter variable``    ``int` `c = 0;` `    ``// Loop to iterate through the heap``    ``for` `(``int` `i = 0; i < N; i++) {` `        ``// Comparing the values at the top.``        ``// If the value of heap A[] is greater,``        ``// then counter is incremented``        ``if` `(pq1.top()>pq2.top()) {``            ``c++;``            ``pq1.pop();``            ``pq2.pop();``        ``}``        ``else` `{``            ``if` `(pq2.size() == 0) {``                ``break``;``            ``}``            ``pq2.pop();``        ``}``    ``}``    ``return` `(c);``}` `// Driver code``int` `main()``{``    ``int` `A[] = { 10, 3, 7, 5, 8 };``    ``int` `B[] = { 8, 6, 2, 5, 9 };``    ``int` `N = ``sizeof``(A)/``sizeof``(A[0]);` `    ``cout<<(check(A, B, N));``}` `// This code is contributed by mohit kumar 29   `

## Java

 `// Java program to find the maximum count of``// values that follow the given condition` `import` `java.util.*;``public` `class` `GFG {` `    ``// Function to find the maximum count of``    ``// values that follow the given condition``    ``static` `int` `check(``int` `A[], ``int` `B[], ``int` `N)``    ``{` `        ``// Initializing the max-heap for the array A[]``        ``PriorityQueue pq1``            ``= ``new` `PriorityQueue(``Collections.reverseOrder());` `        ``// Initializing the max-heap for the array B[]``        ``PriorityQueue pq2``            ``= ``new` `PriorityQueue(``Collections.reverseOrder());` `        ``// Adding the values of A[] into max heap``        ``for` `(``int` `i = ``0``; i < N; i++) {``            ``pq1.add(A[i]);``        ``}` `        ``// Adding the values of B[] into max heap``        ``for` `(``int` `i = ``0``; i < N; i++) {``            ``pq2.add(B[i]);``        ``}` `        ``// Counter variable``        ``int` `c = ``0``;` `        ``// Loop to iterate through the heap``        ``for` `(``int` `i = ``0``; i < N; i++) {` `            ``// Comparing the values at the top.``            ``// If the value of heap A[] is greater,``            ``// then counter is incremented``            ``if` `(pq1.peek().compareTo(pq2.peek()) == ``1``) {``                ``c++;``                ``pq1.poll();``                ``pq2.poll();``            ``}``            ``else` `{``                ``if` `(pq2.size() == ``0``) {``                    ``break``;``                ``}``                ``pq2.poll();``            ``}``        ``}``        ``return` `(c);``    ``}` `    ``// Driver code``    ``public` `static` `void` `main(String args[])``    ``{``        ``int` `A[] = { ``10``, ``3``, ``7``, ``5``, ``8` `};``        ``int` `B[] = { ``8``, ``6``, ``2``, ``5``, ``9` `};``        ``int` `N = A.length;` `        ``System.out.println(check(A, B, N));``    ``}``}`

## Python3

 `# Python3 program to find the maximum count of``# values that follow the given condition``import` `heapq` `# Function to find the maximum count of``# values that follow the given condition``def` `check(A, B,N):` `    ``# Initializing the max-heap for the array A[]``    ``pq1 ``=` `[]``    ``pq2 ``=` `[]` `    ``# Adding the values of A[] into max heap``    ``for` `i ``in` `range``(N):``        ``heapq.heappush(pq1,``-``A[i])` `    ``# Adding the values of B[] into max heap``    ``for` `i ``in` `range``(N):``        ``heapq.heappush(pq2,``-``B[i])` `    ``# Counter variable``    ``c ``=` `0` `    ``# Loop to iterate through the heap``    ``for` `i ``in` `range``(N):` `        ``# Comparing the values at the top.``        ``# If the value of heap A[] is greater,``        ``# then counter is incremented``        ``if` `-``pq1[``0``] > ``-``pq2[``0``]:``            ``c ``+``=` `1``            ``heapq.heappop(pq1)``            ``heapq.heappop(pq2)` `        ``else``:``            ``if` `len``(pq2) ``=``=` `0``:``                ``break``            ``heapq.heappop(pq2)``    ``return` `(c)` `# Driver code``A ``=` `[ ``10``, ``3``, ``7``, ``5``, ``8` `]``B ``=` `[ ``8``, ``6``, ``2``, ``5``, ``9` `]``N ``=` `len``(A)` `print``(check(A, B, N))` `# This code is contributed by apurva raj`

## C#

 `// C# program to find the maximum count of``// values that follow the given condition``using` `System;``using` `System.Collections.Generic;` `class` `GFG{``    ` `// Function to find the maximum count of``// values that follow the given condition``static` `int` `check(``int``[] A, ``int``[] B, ``int` `N)``{``    ` `    ``// Initializing the max-heap for the array A[]``    ``List<``int``> pq1 = ``new` `List<``int``>();``    ` `    ``// Initializing the max-heap for the array B[]``    ``List<``int``> pq2 = ``new` `List<``int``>();``    ` `    ``// Adding the values of A[] into max heap``    ``for``(``int` `i = 0; i < N; i++)``    ``{``        ``pq1.Add(A[i]);``    ``}``    ` `    ``// Adding the values of B[] into max heap``    ``for``(``int` `i = 0; i < N; i++)``    ``{``        ``pq2.Add(B[i]);``    ``}``    ``pq1.Sort();``    ``pq1.Reverse();``    ``pq2.Sort();``    ``pq2.Reverse();``    ` `    ``// Counter variable``    ``int` `c = 0;``    ` `    ``// Loop to iterate through the heap``    ``for``(``int` `i = 0; i < N; i++)``    ``{``        ` `        ``// Comparing the values at the top.``        ``// If the value of heap A[] is greater,``        ``// then counter is incremented``        ``if` `(pq1[0] > pq2[0])``        ``{``            ``c++;``            ``pq1.RemoveAt(0);``            ``pq2.RemoveAt(0);``        ``}``        ``else``        ``{``            ``if` `(pq2.Count == 0)``            ``{``                ``break``;``            ``}``            ``pq2.RemoveAt(0);``        ``}``    ``}``    ``return` `c;``}` `// Driver code``static` `public` `void` `Main()``{``    ``int``[] A = { 10, 3, 7, 5, 8 };``    ``int``[] B = { 8, 6, 2, 5, 9 };``    ``int` `N = A.Length;``    ` `    ``Console.WriteLine(check(A, B, N));``}``}` `// This code is contributed by avanitrachhadiya2155`

## Javascript

 ``

Output:

`4`

Time Complexity: O(N * log(N))
Auxiliary Space: O(N)

My Personal Notes arrow_drop_up