Count of odd and even sum pairs in an array
Given an array arr[] of N positive integers, the task is to find the number of pairs with odd sum and the number of pairs with even sum.
Examples:
Input: arr[] = {1, 2, 3, 4, 5}
Output:
Odd pairs = 6
Even pairs = 4
Input: arr[] = {7, 4, 3, 2}
Output:
Odd pairs = 4
Even pairs = 2
Naive Approach:
The naive approach for this problem is to go through every pair of elements in the array, check for their sums and then count the number of pairs having odd and even sum. This approach will take O(N*N) time.
Efficient Approach:
- Count the number of odd and even elements from the array and store them in variables cntEven and cntOdd.
- In order to get the pair sum as even, all the even elements will be paired with only even elements and all the odd elements will be paired with only odd elements and the count will be ((cntEven * (cntEven – 1)) / 2) + ((cntOdd * (cntOdd – 1)) / 2)
- Now, for the sum to be odd, one of the elements of the pair must be even and the other must be odd and the required count will be cntEven * cntOdd.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to find the count of pairs // with odd sum and the count // of pairs with even sum void findPairs( int arr[], int n) { // To store the count of even and // odd number from the array int cntEven = 0, cntOdd = 0; for ( int i = 0; i < n; i++) { // If the current element is even if (arr[i] % 2 == 0) cntEven++; // If it is odd else cntOdd++; } // To store the count of // pairs with even sum int evenPairs = 0; // All the even elements will make // pairs with each other and the // sum of the pair will be even evenPairs += ((cntEven * (cntEven - 1)) / 2); // All the odd elements will make // pairs with each other and the // sum of the pair will be even evenPairs += ((cntOdd * (cntOdd - 1)) / 2); // To store the count of // pairs with odd sum int oddPairs = 0; // All the even elements will make pairs // with all the odd element and the // sum of the pair will be odd oddPairs += (cntEven * cntOdd); cout << "Odd pairs = " << oddPairs << endl; cout << "Even pairs = " << evenPairs; } // Driver code int main() { int arr[] = { 1, 2, 3, 4, 5 }; int n = sizeof (arr) / sizeof ( int ); findPairs(arr, n); return 0; } |
Java
// Java implementation of the approach class GFG { // Function to find the count of pairs // with odd sum and the count // of pairs with even sum static void findPairs( int arr[], int n) { // To store the count of even and // odd number from the array int cntEven = 0 , cntOdd = 0 ; for ( int i = 0 ; i < n; i++) { // If the current element is even if (arr[i] % 2 == 0 ) cntEven++; // If it is odd else cntOdd++; } // To store the count of // pairs with even sum int evenPairs = 0 ; // All the even elements will make // pairs with each other and the // sum of the pair will be even evenPairs += ((cntEven * (cntEven - 1 )) / 2 ); // All the odd elements will make // pairs with each other and the // sum of the pair will be even evenPairs += ((cntOdd * (cntOdd - 1 )) / 2 ); // To store the count of // pairs with odd sum int oddPairs = 0 ; // All the even elements will make pairs // with all the odd element and the // sum of the pair will be odd oddPairs += (cntEven * cntOdd); System.out.println( "Odd pairs = " + oddPairs); System.out.println( "Even pairs = " + evenPairs); } // Driver code public static void main(String[] args) { int arr[] = { 1 , 2 , 3 , 4 , 5 }; int n = arr.length; findPairs(arr, n); } } // This code is contributed by Rajput-Ji |
Python3
# Python3 implementation of the approach # Function to find the count of pairs # with odd sum and the count # of pairs with even sum def findPairs(arr, n) : # To store the count of even and # odd number from the array cntEven = 0 ; cntOdd = 0 ; for i in range (n) : # If the current element is even if (arr[i] % 2 = = 0 ) : cntEven + = 1 ; # If it is odd else : cntOdd + = 1 ; # To store the count of # pairs with even sum evenPairs = 0 ; # All the even elements will make # pairs with each other and the # sum of the pair will be even evenPairs + = ((cntEven * (cntEven - 1 )) / / 2 ); # All the odd elements will make # pairs with each other and the # sum of the pair will be even evenPairs + = ((cntOdd * (cntOdd - 1 )) / / 2 ); # To store the count of # pairs with odd sum oddPairs = 0 ; # All the even elements will make pairs # with all the odd element and the # sum of the pair will be odd oddPairs + = (cntEven * cntOdd); print ( "Odd pairs = " , oddPairs); print ( "Even pairs = " , evenPairs); # Driver code if __name__ = = "__main__" : arr = [ 1 , 2 , 3 , 4 , 5 ]; n = len (arr); findPairs(arr, n); # This code is contributed by kanugargng |
C#
// C# implementation of the approach using System; class GFG { // Function to find the count of pairs // with odd sum and the count // of pairs with even sum static void findPairs( int []arr, int n) { // To store the count of even and // odd number from the array int cntEven = 0, cntOdd = 0; for ( int i = 0; i < n; i++) { // If the current element is even if (arr[i] % 2 == 0) cntEven++; // If it is odd else cntOdd++; } // To store the count of // pairs with even sum int evenPairs = 0; // All the even elements will make // pairs with each other and the // sum of the pair will be even evenPairs += ((cntEven * (cntEven - 1)) / 2); // All the odd elements will make // pairs with each other and the // sum of the pair will be even evenPairs += ((cntOdd * (cntOdd - 1)) / 2); // To store the count of // pairs with odd sum int oddPairs = 0; // All the even elements will make pairs // with all the odd element and the // sum of the pair will be odd oddPairs += (cntEven * cntOdd); Console.WriteLine( "Odd pairs = " + oddPairs); Console.WriteLine( "Even pairs = " + evenPairs); } // Driver code public static void Main(String[] args) { int []arr = { 1, 2, 3, 4, 5 }; int n = arr.Length; findPairs(arr, n); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // Javascript implementation of the approach // Function to find the count of pairs // with odd sum and the count // of pairs with even sum function findPairs(arr, n) { // To store the count of even and // odd number from the array let cntEven = 0, cntOdd = 0; for (let i = 0; i < n; i++) { // If the current element is even if (arr[i] % 2 == 0) cntEven++; // If it is odd else cntOdd++; } // To store the count of // pairs with even sum let evenPairs = 0; // All the even elements will make // pairs with each other and the // sum of the pair will be even evenPairs += ((cntEven * (cntEven - 1)) / 2); // All the odd elements will make // pairs with each other and the // sum of the pair will be even evenPairs += ((cntOdd * (cntOdd - 1)) / 2); // To store the count of // pairs with odd sum let oddPairs = 0; // All the even elements will make pairs // with all the odd element and the // sum of the pair will be odd oddPairs += (cntEven * cntOdd); document.write( "Odd pairs = " + oddPairs + "<br>" ); document.write( "Even pairs = " + evenPairs); } // Driver code let arr = [1, 2, 3, 4, 5]; let n = arr.length; findPairs(arr, n); // This code is contributed by _saurabh_jaiswal </script> |
Output:
Odd pairs = 6 Even pairs = 4
Complexity Analysis:
- Time Complexity : O(N).
In every iteration of for loop, an element from either of the array is processed. Therefore, the time complexity is O(N). - Auxiliary Space : O(1).
Any extra space is not required, so the space complexity is constant.
Please Login to comment...