Given a string **S** of size **N**, the task is to count the occurrences of all the prefixes of the given string **S**.

**Examples:**

Input:S = “AAAA”Output:

A occurs 4 times

AA occurs 3 times.

AAA occurs 2 times.

AAAA occurs 1 times.Explanation:

Below is the illustration of all the prefix:

Input:S = “ABACABA”Output:

A occurs 4 times

AB occurs 2 times

ABA occurs 2 times

ABAC occurs 1 times

ABACA occurs 1 times

ABACAB occurs 1 times

ABACABA occurs 1 times

**Naive Approach:**

- Traverse over all the prefixes in set P. Let the x be the prefix.
- Do a sliding window approach of size |x|.
- Check if the current sliding window on S is equal to x. If yes then increase the count[x] by 1.

**Time complexity:** O(N^{3}) **Auxiliary Space:** O(N)

**Efficient Approach:**

Use the **LPS** array (also called **prefix_function**) from the KMP algorithm.

The **prefix function** for this string is defined as an array **LPS** of length** N**, where **LPS[i]** is the length of the longest proper prefix of the substring **S[0…i] **which is also a suffix of this substring. Let **occ[i]** denote the number of occurrences of the prefix of length **i**.

Below are the steps to implement this approach:

- Compute the
**LPS array**or**prefix_function**. - For each value of the prefix function, first, count how many times it occurs in the
**LPS array**. - The length prefix
**i**appears exactly**ans[i]**times, then this number must be added to the number of occurrences of its longest suffix that is also a prefix. - In the end, add 1 to all the values of
**occ array**, because of the original prefix that should be counted as well.

**For example:**

LPS[i] denotes that in position **i**, a prefix of length = **LPS[i]** appears. And this is the longest prefix possible. But shorter prefixes can occur.

For String S = **“AAAA”**, following are the prefixes:

S[0..0] = A

S[0..1] = AA

S[0..2] = AAA

S[0..3] = AAAA

Initially:

occ[A] = 0

occ[AA] = 0

occ[AAA] = 0

occ[AAAA] = 0

**Step1:** LPS Array of the following string denotes the length of the longest prefix which is also a suffix:

LPS[1] denotes in string A

A, A is a suffix and also a prefix as LPS[1] = 1

LPS[2] denotes in string AAA, AA is a suffix and also a prefix as LPS[2] = 2

LPS[3] denotes in string AAAA, AAA is a suffix and also a prefix as LPS[3] = 3

**Step 2:**Add these occurrences of prefixes as suffixes to the answer in the **occ[]** array:

Values : Counted substrings

occ[A] = 1:S[1]

occ[AA] = 1:S[1..2]

occ[AAA] = 1:S[1..3]

occ[AAAA] = 0:NULL(as there is not a prefix“AAAA”which is also a suffix.

**Step 3:** Now traverse the string in reverse order starting from **“AAA”** (as the last value will always be 0 since the complete string is not a proper prefix).

Since, string “A

AA” S[1..3] contains“AA”S[2..3] as well, which was not counted yet, therefore increment the occurrence of string“AA”in occ[“AA”] as occ[“AA”] += occ[“AAA”]. Below is the count for the same:Values : Counted substrings

occ[A] = 1:S[1]

occ[AA] = 2:S[1..2], S[2..3]

occ[AAA] = 1:S[1..3]

occ[AAAA] = 0:NULL

Now string “A**A**” contains **“A”** as well, which was not counted yet, therefore increment the occurrence of string **“A”** in occ[“A”] as occ[“A”] += occ[“AA”]. Below is the count for the same:

Values : Counted substrings

occ[A] = 3:S[1], S[2], S[3]

occ[AA] = 2:S[1..2], S[2..3]

occ[AAA] = 1:S[1..3]

occ[AAAA] = 0:NULL

**Step 4:** At last add one to all occurrences for the original prefixes, which are not counted yet.

Values : Counted substrings

occ[A] = 4:S[1], S[2], S[3], S[0]

occ[AA] = 3:S[1..2], S[2..3], S[0..1]

occ[AAA] = 2:S[1..3], S[0..2]

occ[AAAA] = 1:S[0..3]

Below is the implementation of the above approach:

## C++

`// C++ program for the above approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to print the count of all` `// prefix in the given string` `void` `print(vector<` `int` `>& occ, string& s)` `{` ` ` `// Iterate over string s` ` ` `for` `(` `int` `i = 1; i <= ` `int` `(s.size());` ` ` `i++) {` ` ` `// Print the prefix and their` ` ` `// frequency` ` ` `cout << s.substr(0, i)` ` ` `<< ` `" occurs "` ` ` `<< occ[i]` ` ` `<< ` `" times."` ` ` `<< endl;` ` ` `}` `}` `// Function to implement the LPS` `// array to store the longest prefix` `// which is also a suffix for every` `// substring of the string S` `vector<` `int` `> prefix_function(string& s)` `{` ` ` `// Array to store LPS values` ` ` `vector<` `int` `> LPS(s.size());` ` ` `// Value of lps[0] is 0` ` ` `// by definition` ` ` `LPS[0] = 0;` ` ` `// Find the values of LPS[i] for` ` ` `// the rest of the string using` ` ` `// two pointers and DP` ` ` `for` `(` `int` `i = 1;` ` ` `i < ` `int` `(s.size());` ` ` `i++) {` ` ` `// Initially set the value` ` ` `// of j as the longest` ` ` `// prefix that is also a` ` ` `// suffix for i as LPS[i-1]` ` ` `int` `j = LPS[i - 1];` ` ` `// Check if the suffix of` ` ` `// length j+1 is also a prefix` ` ` `while` `(j > 0 && s[i] != s[j]) {` ` ` `j = LPS[j - 1];` ` ` `}` ` ` `// If s[i] = s[j] then, assign` ` ` `// LPS[i] as j+1` ` ` `if` `(s[i] == s[j]) {` ` ` `LPS[i] = j + 1;` ` ` `}` ` ` `// If we reached j = 0, assign` ` ` `// LPS[i] as 0 as there was no` ` ` `// prefix equal to suffix` ` ` `else` `{` ` ` `LPS[i] = 0;` ` ` `}` ` ` `}` ` ` `// Return the calculated` ` ` `// LPS array` ` ` `return` `LPS;` `}` `// Function to count the occurrence` `// of all the prefix in the string S` `void` `count_occurence(string& s)` `{` ` ` `int` `n = s.size();` ` ` `// Call the prefix_function` ` ` `// to get LPS` ` ` `vector<` `int` `> LPS` ` ` `= prefix_function(s);` ` ` `// To store the occurrence of` ` ` `// all the prefix` ` ` `vector<` `int` `> occ(n + 1);` ` ` `// Count all the suffixes that` ` ` `// are also prefix` ` ` `for` `(` `int` `i = 0; i < n; i++) {` ` ` `occ[LPS[i]]++;` ` ` `}` ` ` `// Add the occurences of` ` ` `// i to smaller prefixes` ` ` `for` `(` `int` `i = n - 1;` ` ` `i > 0; i--) {` ` ` `occ[LPS[i - 1]] += occ[i];` ` ` `}` ` ` `// Adding 1 to all occ[i] for all` ` ` `// the orignal prefix` ` ` `for` `(` `int` `i = 0; i <= n; i++)` ` ` `occ[i]++;` ` ` `// Function Call to print the` ` ` `// occurence of all the prefix` ` ` `print(occ, s);` `}` `// Driver Code` `int` `main()` `{` ` ` `// Given String` ` ` `string A = ` `"ABACABA"` `;` ` ` `// Function Call` ` ` `count_occurence(A);` ` ` `return` `0;` `}` |

*chevron_right*

*filter_none*

## Java

`// Java program for ` `// the above approach` `import` `java.util.*;` `class` `GFG{` `// Function to print the count ` `// of all prefix in the ` `// given String` `static` `void` `print(` `int` `[] occ, ` ` ` `String s)` `{` ` ` `// Iterate over String s` ` ` `for` `(` `int` `i = ` `1` `; ` ` ` `i <= s.length() - ` `1` `; i++) ` ` ` `{` ` ` `// Print the prefix and their` ` ` `// frequency` ` ` `System.out.print(s.substring(` `0` `, i) + ` ` ` `" occurs "` `+ occ[i] + ` ` ` `" times."` `+ ` `"\n"` `);` ` ` `}` `}` `// Function to implement the LPS` `// array to store the longest prefix` `// which is also a suffix for every` `// subString of the String S` `static` `int` `[] prefix_function(String s)` `{` ` ` `// Array to store LPS values` ` ` `int` `[]LPS = ` `new` `int` `[s.length()];` ` ` `// Value of lps[0] is 0` ` ` `// by definition` ` ` `LPS[` `0` `] = ` `0` `;` ` ` `// Find the values of LPS[i] for` ` ` `// the rest of the String using` ` ` `// two pointers and DP` ` ` `for` `(` `int` `i = ` `1` `;` ` ` `i < s.length(); i++) ` ` ` `{` ` ` `// Initially set the value` ` ` `// of j as the longest` ` ` `// prefix that is also a` ` ` `// suffix for i as LPS[i-1]` ` ` `int` `j = LPS[i - ` `1` `];` ` ` `// Check if the suffix of` ` ` `// length j+1 is also a prefix` ` ` `while` `(j > ` `0` `&& ` ` ` `s.charAt(i) != s.charAt(j)) ` ` ` `{` ` ` `j = LPS[j - ` `1` `];` ` ` `}` ` ` `// If s[i] = s[j] then, assign` ` ` `// LPS[i] as j+1` ` ` `if` `(s.charAt(i) == s.charAt(j)) ` ` ` `{` ` ` `LPS[i] = j + ` `1` `;` ` ` `}` ` ` `// If we reached j = 0, assign` ` ` `// LPS[i] as 0 as there was no` ` ` `// prefix equal to suffix` ` ` `else` ` ` `{` ` ` `LPS[i] = ` `0` `;` ` ` `}` ` ` `}` ` ` `// Return the calculated` ` ` `// LPS array` ` ` `return` `LPS;` `}` `// Function to count the occurrence` `// of all the prefix in the String S` `static` `void` `count_occurence(String s)` `{` ` ` `int` `n = s.length();` ` ` `// Call the prefix_function` ` ` `// to get LPS` ` ` `int` `[] LPS = prefix_function(s);` ` ` `// To store the occurrence of` ` ` `// all the prefix` ` ` `int` `[]occ = ` `new` `int` `[n + ` `1` `];` ` ` `// Count all the suffixes that` ` ` `// are also prefix` ` ` `for` `(` `int` `i = ` `0` `; i < n; i++) ` ` ` `{` ` ` `occ[LPS[i]]++;` ` ` `}` ` ` `// Add the occurences of` ` ` `// i to smaller prefixes` ` ` `for` `(` `int` `i = n - ` `1` `;` ` ` `i > ` `0` `; i--) ` ` ` `{` ` ` `occ[LPS[i - ` `1` `]] += occ[i];` ` ` `}` ` ` `// Adding 1 to all occ[i] for all` ` ` `// the orignal prefix` ` ` `for` `(` `int` `i = ` `0` `; i <= n; i++)` ` ` `occ[i]++;` ` ` `// Function Call to print the` ` ` `// occurence of all the prefix` ` ` `print(occ, s);` `}` `// Driver Code` `public` `static` `void` `main(String[] args)` `{` ` ` `// Given String` ` ` `String A = ` `"ABACABA"` `;` ` ` `// Function Call` ` ` `count_occurence(A);` `}` `}` `// This code is contributed by Princi Singh` |

*chevron_right*

*filter_none*

## Python3

`# Python3 program for the above approach` `# Function to print the count of all` `# prefix in the given string` `def` `Print` `(occ, s):` ` ` ` ` `# Iterate over string s` ` ` `for` `i ` `in` `range` `(` `1` `, ` `len` `(s) ` `+` `1` `):` ` ` `# Print the prefix and their` ` ` `# frequency` ` ` `print` `(s[` `0` `: i], ` `"occur"` `, occ[i], ` `"times."` `)` `# Function to implement the LPS` `# array to store the longest prefix` `# which is also a suffix for every` `# substring of the string S` `def` `prefix_function(s):` ` ` `# Array to store LPS values` ` ` `# Value of lps[0] is 0` ` ` `# by definition` ` ` `LPS ` `=` `[` `0` `for` `i ` `in` `range` `(` `len` `(s))]` ` ` ` ` `# Find the values of LPS[i] for` ` ` `# the rest of the string using` ` ` `# two pointers and DP` ` ` `for` `i ` `in` `range` `(` `1` `, ` `len` `(s)):` ` ` `# Initially set the value` ` ` `# of j as the longest` ` ` `# prefix that is also a` ` ` `# suffix for i as LPS[i-1]` ` ` `j ` `=` `LPS[i ` `-` `1` `]` ` ` `# Check if the suffix of` ` ` `# length j+1 is also a prefix` ` ` `while` `(j > ` `0` `and` `s[i] !` `=` `s[j]):` ` ` `j ` `=` `LPS[j ` `-` `1` `]` ` ` `# If s[i] = s[j] then, assign` ` ` `# LPS[i] as j+1` ` ` `if` `(s[i] ` `=` `=` `s[j]):` ` ` `LPS[i] ` `=` `j ` `+` `1` ` ` ` ` `# If we reached j = 0, assign` ` ` `# LPS[i] as 0 as there was no` ` ` `# prefix equal to suffix` ` ` `else` `:` ` ` `LPS[i] ` `=` `0` ` ` `# Return the calculated` ` ` `# LPS array` ` ` `return` `LPS` `# Function to count the occurrence` `# of all the prefix in the string S` `def` `count_occurence(s):` ` ` ` ` `n ` `=` `len` `(s)` ` ` `# Call the prefix_function` ` ` `# to get LPS` ` ` `LPS ` `=` `prefix_function(s)` ` ` `# To store the occurrence of` ` ` `# all the prefix` ` ` `occ ` `=` `[` `0` `for` `i ` `in` `range` `(n ` `+` `1` `)]` ` ` `# Count all the suffixes that` ` ` `# are also prefix` ` ` `for` `i ` `in` `range` `(n):` ` ` `occ[LPS[i]] ` `+` `=` `1` ` ` `# Add the occurences of` ` ` `# i to smaller prefixes` ` ` `for` `i ` `in` `range` `(n ` `-` `1` `, ` `0` `, ` `-` `1` `):` ` ` `occ[LPS[i ` `-` `1` `]] ` `+` `=` `occ[i]` ` ` ` ` `# Adding 1 to all occ[i] for all` ` ` `# the orignal prefix` ` ` `for` `i ` `in` `range` `(n ` `+` `1` `):` ` ` `occ[i] ` `+` `=` `1` ` ` ` ` `# Function Call to print the` ` ` `# occurence of all the prefix` ` ` `Print` `(occ, s)` `# Driver Code` `# Given String` `A ` `=` `"ABACABA"` `# Function Call` `count_occurence(A)` `# This code is contributed by avanitrachhadiya2155` |

*chevron_right*

*filter_none*

## C#

`// C# program for ` `// the above approach` `using` `System;` `class` `GFG{` `// Function to print the ` `// count of all prefix ` `// in the given String` `static` `void` `print(` `int` `[] occ, ` ` ` `String s)` `{` ` ` `// Iterate over String s` ` ` `for` `(` `int` `i = 1; ` ` ` `i <= s.Length - 1; i++) ` ` ` `{` ` ` `// Print the prefix and their` ` ` `// frequency` ` ` `Console.Write(s.Substring(0, i) + ` ` ` `" occurs "` `+ occ[i] + ` ` ` `" times."` `+ ` `"\n"` `);` ` ` `}` `}` `// Function to implement the LPS` `// array to store the longest prefix` `// which is also a suffix for every` `// subString of the String S` `static` `int` `[] prefix_function(String s)` `{` ` ` `// Array to store LPS values` ` ` `int` `[]LPS = ` `new` `int` `[s.Length];` ` ` `// Value of lps[0] is 0` ` ` `// by definition` ` ` `LPS[0] = 0;` ` ` `// Find the values of LPS[i] for` ` ` `// the rest of the String using` ` ` `// two pointers and DP` ` ` `for` `(` `int` `i = 1;` ` ` `i < s.Length; i++) ` ` ` `{` ` ` `// Initially set the value` ` ` `// of j as the longest` ` ` `// prefix that is also a` ` ` `// suffix for i as LPS[i-1]` ` ` `int` `j = LPS[i - 1];` ` ` `// Check if the suffix of` ` ` `// length j+1 is also a prefix` ` ` `while` `(j > 0 && s[i] != s[j]) ` ` ` `{` ` ` `j = LPS[j - 1];` ` ` `}` ` ` `// If s[i] = s[j] then, ` ` ` `// assign LPS[i] as j+1` ` ` `if` `(s[i] == s[j]) ` ` ` `{` ` ` `LPS[i] = j + 1;` ` ` `}` ` ` `// If we reached j = 0, assign` ` ` `// LPS[i] as 0 as there was no` ` ` `// prefix equal to suffix` ` ` `else` ` ` `{` ` ` `LPS[i] = 0;` ` ` `}` ` ` `}` ` ` `// Return the calculated` ` ` `// LPS array` ` ` `return` `LPS;` `}` `// Function to count the occurrence` `// of all the prefix in the String S` `static` `void` `count_occurence(String s)` `{` ` ` `int` `n = s.Length;` ` ` `// Call the prefix_function` ` ` `// to get LPS` ` ` `int` `[] LPS = prefix_function(s);` ` ` `// To store the occurrence of` ` ` `// all the prefix` ` ` `int` `[]occ = ` `new` `int` `[n + 1];` ` ` `// Count all the suffixes that` ` ` `// are also prefix` ` ` `for` `(` `int` `i = 0; i < n; i++) ` ` ` `{` ` ` `occ[LPS[i]]++;` ` ` `}` ` ` `// Add the occurences of` ` ` `// i to smaller prefixes` ` ` `for` `(` `int` `i = n - 1;` ` ` `i > 0; i--) ` ` ` `{` ` ` `occ[LPS[i - 1]] += occ[i];` ` ` `}` ` ` `// Adding 1 to all occ[i] for all` ` ` `// the orignal prefix` ` ` `for` `(` `int` `i = 0; i <= n; i++)` ` ` `occ[i]++;` ` ` `// Function Call to print the` ` ` `// occurence of all the prefix` ` ` `print(occ, s);` `}` `// Driver Code` `public` `static` `void` `Main(String[] args)` `{` ` ` `// Given String` ` ` `String A = ` `"ABACABA"` `;` ` ` `// Function Call` ` ` `count_occurence(A);` `}` `}` `// This code is contributed by Amit Katiyar` |

*chevron_right*

*filter_none*

**Output:**

A occurs 4 times. AB occurs 2 times. ABA occurs 2 times. ABAC occurs 1 times. ABACA occurs 1 times. ABACAB occurs 1 times. ABACABA occurs 1 times.

**Time Complexity:** *O(N ^{2})*

**Axillary Space:**

*O(N)*

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.