Skip to content
Related Articles

Related Articles

Improve Article
Count of numbers whose sum of increasing powers of digits is equal to the number itself
  • Last Updated : 21 Apr, 2021

Given an integer N, the task is to count all the integers less than or equal to N that follow the property where the sum of their digits raised to the power (starting from 1 and increased by 1 each time) is equal to the integer itself i.e. if D1D2D3…DN is an N digit number then for it to satisfy the given property (D11 + D22 + D33 + … + DNN) must be equal to D1D2D3…DN.
Examples: 
 

Input: N = 100 
Output: 11 
01 = 0 
11 = 1 
21 = 2 
… 
91 = 9 
81 + 92 = 8 + 81 = 89
Input: N = 200 
Output: 13 
 

 

Approach: Initialise count = 0 and for every number from 0 to N, find the sum of digits raised to the increasing power and if the resultant sum is equal to the number itself then increment the count. Finally, print the count.
Below is the implementation of the above approach: 
 

CPP




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the
// count of digits of n
int countDigits(int n)
{
    int cnt = 0;
    while (n > 0) {
        cnt++;
        n /= 10;
    }
    return cnt;
}
 
// Function to return the sum of
// increasing powers of N
int digitPowSum(int n)
{
 
    // To store the required answer
    int sum = 0;
 
    // Count of digits in n which will
    // be the power of the last digit
    int pw = countDigits(n);
 
    // While there are digits left
    while (n > 0) {
 
        // Get the last digit
        int d = n % 10;
 
        // Add the last digit after raising
        // it to the required power
        sum += pow(d, pw);
 
        // Decrement the power for
        // the previous digit
        pw--;
 
        // Remove the last digit
        n /= 10;
    }
    return sum;
}
 
// Function to return the count
// of integers which satisfy
// the given conditions
int countNum(int n)
{
    int count = 0;
 
    for (int i = 0; i <= n; i++) {
 
        // If current element satisfies
        // the given condition
        if (i == digitPowSum(i)) {
            count++;
        }
    }
    return count;
}
 
// Driver code
int main()
{
    int n = 200;
 
    cout << countNum(n);
 
    return 0;
}

Java




// Java implementation of the approach
 
class GFG
{
     
    // Function to return the
    // count of digits of n
    static int countDigits(int n)
    {
        int cnt = 0;
        while (n > 0)
        {
            cnt++;
            n /= 10;
        }
        return cnt;
    }
     
    // Function to return the sum of
    // increasing powers of N
    static int digitPowSum(int n)
    {
     
        // To store the required answer
        int sum = 0;
     
        // Count of digits in n which will
        // be the power of the last digit
        int pw = countDigits(n);
     
        // While there are digits left
        while (n > 0)
        {
     
            // Get the last digit
            int d = n % 10;
     
            // Add the last digit after raising
            // it to the required power
            sum += Math.pow(d, pw);
     
            // Decrement the power for
            // the previous digit
            pw--;
     
            // Remove the last digit
            n /= 10;
        }
        return sum;
    }
     
    // Function to return the count
    // of integers which satisfy
    // the given conditions
    static int countNum(int n)
    {
        int count = 0;
     
        for (int i = 0; i <= n; i++)
        {
     
            // If current element satisfies
            // the given condition
            if (i == digitPowSum(i))
            {
                count++;
            }
        }
        return count;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int n = 200;
     
        System.out.println(countNum(n));
     
    }
}
 
// This code is contributed by AnkitRai01

Python




# Python3 implementation of the approach
 
# Function to return the
# count of digits of n
def countDigits(n):
    cnt = 0
    while (n > 0):
        cnt += 1
        n //= 10
    return cnt
 
# Function to return the sum of
# increasing powers of N
def digitPowSum(n):
 
    # To store the required answer
    sum = 0
 
    # Count of digits in n which will
    # be the power of the last digit
    pw = countDigits(n)
 
    # While there are digits left
    while (n > 0):
 
        # Get the last digit
        d = n % 10
 
        # Add the last digit after raising
        # it to the required power
        sum += pow(d, pw)
 
        # Decrement the power for
        # the previous digit
        pw -= 1
 
        # Remove the last digit
        n //= 10
    return sum
 
# Function to return the count
# of integers which satisfy
# the given conditions
def countNum(n):
 
    count = 0
 
    for i in range(n + 1):
 
        # If current element satisfies
        # the given condition
        if (i == digitPowSum(i)):
            count += 1
 
    return count
 
# Driver code
n = 200
 
print(countNum(n))
 
# This code is contributed by mohit kumar 29

C#




// C# implementation of the approach
using System;
 
class GFG
{
     
    // Function to return the
    // count of digits of n
    static int countDigits(int n)
    {
        int cnt = 0;
        while (n > 0)
        {
            cnt++;
            n /= 10;
        }
        return cnt;
    }
     
    // Function to return the sum of
    // increasing powers of N
    static int digitPowSum(int n)
    {
     
        // To store the required answer
        int sum = 0;
     
        // Count of digits in n which will
        // be the power of the last digit
        int pw = countDigits(n);
     
        // While there are digits left
        while (n > 0)
        {
     
            // Get the last digit
            int d = n % 10;
     
            // Add the last digit after raising
            // it to the required power
            sum += (int) Math.Pow(d, pw);
     
            // Decrement the power for
            // the previous digit
            pw--;
     
            // Remove the last digit
            n /= 10;
        }
        return sum;
    }
     
    // Function to return the count
    // of integers which satisfy
    // the given conditions
    static int countNum(int n)
    {
        int count = 0;
     
        for (int i = 0; i <= n; i++)
        {
     
            // If current element satisfies
            // the given condition
            if (i == digitPowSum(i))
                count++;
        }
        return count;
    }
     
    // Driver code
    public static void Main (String[] args)
    {
        int n = 200;
     
        Console.WriteLine(countNum(n));
     
    }
}
 
// This code is contributed by
// sanjeev2552

Javascript




<script>
 
// JavaScript implementation of the approach
 
// Function to return the
// count of digits of n
function countDigits(n)
{
    let cnt = 0;
    while (n > 0) {
        cnt++;
        n = Math.floor(n / 10);
    }
    return cnt;
}
 
// Function to return the sum of
// increasing powers of N
function digitPowSum(n)
{
 
    // To store the required answer
    let sum = 0;
 
    // Count of digits in n which will
    // be the power of the last digit
    let pw = countDigits(n);
 
    // While there are digits left
    while (n > 0) {
 
        // Get the last digit
        let d = n % 10;
 
        // Add the last digit after raising
        // it to the required power
        sum += Math.pow(d, pw);
 
        // Decrement the power for
        // the previous digit
        pw--;
 
        // Remove the last digit
        n = Math.floor(n / 10);
    }
    return sum;
}
 
// Function to return the count
// of integers which satisfy
// the given conditions
function countNum(n)
{
    let count = 0;
 
    for (let i = 0; i <= n; i++) {
 
        // If current element satisfies
        // the given condition
        if (i == digitPowSum(i)) {
            count++;
        }
    }
    return count;
}
 
// Driver code
 
    let n = 200;
 
    document.write(countNum(n));
 
// This code is contributed by Surbhi Tyagi.
 
</script>
Output: 
13

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes




My Personal Notes arrow_drop_up
Recommended Articles
Page :