Skip to content
Related Articles

Related Articles

Improve Article

Count of numbers upto M divisible by given Prime Numbers

  • Last Updated : 19 Mar, 2021

Given an array arr[] of Prime Numbers and a number M, the task is to count the number of elements in the range [1, M] that are divisible by any of the given prime numbers.
 

Examples:

Input: arr[] = {2, 3, 5, 7} M = 100  
Output: 78  
Explanation:
In total there are 78 numbers that are divisible by either of 2 3 5 or 7.

Input: arr[] = {2, 5, 7, 11} M = 200
Output: 137
Explanation:
In total there are 137 numbers that are divisible by either of 2 5 7 or 11.

Naive Approach: The idea is iterate over the range [1, M] and check if any of the array element is divides the element in the range [1, M] then count the element else check for the next number in the range.
Below is the implementation of the above approach:



C++




// C++ program for the above approach
#include <iostream>
using namespace std;
 
// Function to count the numbers that
// are divisible by the numbers in
// the array from range 1 to M
int count(int a[], int M, int N)
{
    // Initialize the count variable
    int cnt = 0;
 
    // Iterate over [1, M]
    for (int i = 1; i <= M; i++) {
 
        // Iterate over array elements arr[]
        for (int j = 0; j < N; j++) {
 
            // Check if i is divisible by a[j]
            if (i % a[j] == 0) {
 
                // Increment the count
                cnt++;
                break;
            }
        }
    }
 
    // Return the answer
    return cnt;
}
 
// Driver code
int main()
{
    // Given array arr[]
    int arr[] = { 2, 3, 5, 7 };
 
    // Given Number M
    int m = 100;
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    cout << count(arr, m, n);
    return 0;
}

Java




// Java program for the above approach
class GFG{
 
// Function to count the numbers that
// are divisible by the numbers in
// the array from range 1 to M
static int count(int a[], int M, int N)
{
     
    // Initialize the count variable
    int cnt = 0;
 
    // Iterate over [1, M]
    for(int i = 1; i <= M; i++)
    {
         
        // Iterate over array elements arr[]
        for(int j = 0; j < N; j++)
        {
             
            // Check if i is divisible by a[j]
            if (i % a[j] == 0)
            {
                 
                // Increment the count
                cnt++;
                break;
            }
        }
    }
     
    // Return the answer
    return cnt;
}
 
// Driver code
public static void main(String[] args)
{
     
    // Given array arr[]
    int arr[] = { 2, 3, 5, 7 };
 
    // Given number M
    int m = 100;
    int n = arr.length;
 
    // Function call
    System.out.print(count(arr, m, n));
}
}
 
// This code is contributed by Amit Katiyar

Python3




# Python3 program for the above approach
 
# Function to count the numbers that
# are divisible by the numbers in
# the array from range 1 to M
def count(a, M, N):
     
    # Initialize the count variable
    cnt = 0
 
    # Iterate over [1, M]
    for i in range(1, M + 1):
 
        # Iterate over array elements arr[]
        for j in range(N):
 
            # Check if i is divisible by a[j]
            if (i % a[j] == 0):
 
                # Increment the count
                cnt += 1
                break
 
    # Return the answer
    return cnt
 
# Driver code
 
# Given list lst
lst = [ 2, 3, 5, 7 ]
 
# Given number M
m = 100
n = len(lst)
 
# Function call
print(count(lst, m, n))
 
# This code is contributed by vishu2908   

C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to count the numbers that
// are divisible by the numbers in
// the array from range 1 to M
static int count(int []a, int M, int N)
{
     
    // Initialize the count variable
    int cnt = 0;
 
    // Iterate over [1, M]
    for(int i = 1; i <= M; i++)
    {
         
        // Iterate over array elements []arr
        for(int j = 0; j < N; j++)
        {
             
            // Check if i is divisible by a[j]
            if (i % a[j] == 0)
            {
                 
                // Increment the count
                cnt++;
                break;
            }
        }
    }
     
    // Return the answer
    return cnt;
}
 
// Driver code
public static void Main(String[] args)
{
     
    // Given array []arr
    int []arr = { 2, 3, 5, 7 };
 
    // Given number M
    int m = 100;
    int n = arr.Length;
 
    // Function call
    Console.Write(count(arr, m, n));
}
}
 
// This code is contributed by Amit Katiyar

Javascript




<script>
 
    // Javascript program for the above approach
     
    // Function to count the numbers that
    // are divisible by the numbers in
    // the array from range 1 to M
    function count(a, M, N)
    {
        // Initialize the count variable
        let cnt = 0;
 
        // Iterate over [1, M]
        for (let i = 1; i <= M; i++) {
 
            // Iterate over array elements arr[]
            for (let j = 0; j < N; j++) {
 
                // Check if i is divisible by a[j]
                if (i % a[j] == 0) {
 
                    // Increment the count
                    cnt++;
                    break;
                }
            }
        }
 
        // Return the answer
        return cnt;
    }
     
    // Given array arr[]
    let arr = [ 2, 3, 5, 7 ];
   
    // Given Number M
    let m = 100;
    let n = arr.length;
   
    // Function Call
    document.write(count(arr, m, n));
     
</script>
Output
78

Time Complexity: O(N*M) 
Auxiliary Space: O(1) 
Another Approach: Another method to solve this problem is use Dynamic Programming and Seive. Mark all the numbers up to M that are divisible by any prime number in the array. Then count all the marked numbers and print it.

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :