Open In App
Related Articles

Count of numbers in range [L, R] with LSB as 0 in their Binary representation

Improve Article
Improve
Save Article
Save
Like Article
Like

Given two integers L and R. The task is to find the count of all numbers in the range [L, R] whose Least Significant Bit in binary representation is 0.  

Examples:  

Input: L = 10, R = 20  
Output: 6  

Input: L = 7, R = 11  
Output: 2   

 

Naive approach: The simplest approach is to solve this problem is to check for every number in the range [L, R],  if Least Significant Bit in binary representation is 0.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count
// of required numbers
int countNumbers(int l, int r)
{
    int count = 0;
 
    for (int i = l; i <= r; i++) {
        // If rightmost bit is 0
        if ((i & 1) == 0) {
            count++;
        }
    }
    // Return the required count
    return count;
}
 
// Driver code
int main()
{
    int l = 10, r = 20;
 
    // Call function countNumbers
    cout << countNumbers(l, r);
    return 0;
}


Java




// Java implementation of the approach
import java.io.*;
 
class GFG{
     
// Function to return the count
// of required numbers
static int countNumbers(int l, int r)
{
    int count = 0;
    for(int i = l; i <= r; i++)
    {
         
        // If rightmost bit is 0
        if ((i & 1) == 0)
            count += 1;
    }
     
    // Return the required count
    return count;
}
 
// Driver code
public static void main(String[] args)
{
    int l = 10, r = 20;
     
    // Call function countNumbers
    System.out.println(countNumbers(l, r));
}
}
 
// This code is contributed by MuskanKalra1


Python3




# Python3 implementation of the approach
 
# Function to return the count
# of required numbers
def countNumbers(l, r):
     
    count = 0
     
    for i in range(l, r + 1):
         
        # If rightmost bit is 0
        if ((i & 1) == 0):
            count += 1
             
    # Return the required count
    return count
 
# Driver code
l = 10
r = 20
 
# Call function countNumbers
print(countNumbers(l, r))
 
# This code is contributed by amreshkumar3


C#




// C# implementation of the approach
using System;
 
class GFG {
 
    // Function to return the count
    // of required numbers
    static int countNumbers(int l, int r)
    {
        int count = 0;
        for (int i = l; i <= r; i++) {
 
            // If rightmost bit is 0
            if ((i & 1) == 0)
                count += 1;
        }
 
        // Return the required count
        return count;
    }
 
    // Driver code
    public static void Main()
    {
        int l = 10, r = 20;
 
        // Call function countNumbers
        Console.WriteLine(countNumbers(l, r));
    }
}
 
// This code is contributed by subham348.


Javascript




<script>
 
// JavaScript implementation of the approach
 
// Function to return the count
// of required numbers
function countNumbers(l, r)
{
    let count = 0;
 
    for (let i = l; i <= r; i++) {
        // If rightmost bit is 0
        if ((i & 1) == 0) {
            count++;
        }
    }
    // Return the required count
    return count;
}
 
// Driver code
    let l = 10, r = 20;
 
    // Call function countNumbers
    document.write(countNumbers(l, r));
 
</script>


Output

6

Time Complexity: O(r – l)  
Auxiliary Space: O(1)

Efficient approach: This problem can be solved by using properties of bits. Only even numbers have rightmost bit as 0. The count can be found using this formula ((R / 2) – (L – 1) / 2) in O(1) time.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count
// of required numbers
int countNumbers(int l, int r)
{
    // Count of numbers in range
    // which are divisible by 2
    return ((r / 2) - (l - 1) / 2);
}
 
// Driver code
int main()
{
    int l = 10, r = 20;
    cout << countNumbers(l, r);
    return 0;
}


Java




// Java implementation of the approach
import java.io.*;
 
class GFG{
     
// Function to return the count
// of required numbers
static int countNumbers(int l, int r)
{
     
    // Count of numbers in range
    //  which are divisible by 2
    return ((r / 2) - (l - 1) / 2);
}
 
// Driver Code
public static void main(String[] args)
{
    int l = 10;
    int r = 20;
     
    System.out.println(countNumbers(l, r));
}
}
 
// This code is contributed by MuskanKalra1


Python3




# Python3 implementation of the approach
 
# Function to return the count
# of required numbers
def countNumbers(l, r):
 
    # Count of numbers in range
    #  which are divisible by 2
    return ((r // 2) - (l - 1) // 2)
 
# Driver code
l = 10
r = 20
 
print(countNumbers(l, r))
 
# This code is contributed by amreshkumar3


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to return the count
// of required numbers
static int countNumbers(int l, int r)
{
   
    // Count of numbers in range
    // which are divisible by 2
    return ((r / 2) - (l - 1) / 2);
}
 
// Driver code
public static void Main()
{
    int l = 10, r = 20;
    Console.Write(countNumbers(l, r));
}
}
 
// This code is contributed by SURENDRA_GANGWAR.


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the count
// of required numbers
function countNumbers(l, r)
{
     
    // Count of numbers in range
    // which are divisible by 2
    return(parseInt(r / 2) -
          parseInt((l - 1) / 2));
}
 
// Driver code
let l = 10, r = 20;
 
document.write(countNumbers(l, r));
 
// This code is contributed by subhammahato348
 
</script>


Output

6

Time Complexity: O(1) 
Auxiliary Space: O(1)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 16 Jul, 2021
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials