Skip to content
Related Articles
Count of numbers having only 1 set bit in the range [0, n]
• Difficulty Level : Medium
• Last Updated : 18 Mar, 2021

Given an integer n, the task is to count the numbers having only 1 set bit in the range [0, n].
Examples:

Input: n = 7
Output:
000, 001, 010, 011, 100, 101, 110 and 111 are the binary representation of all the numbers upto 7.
And there are only 3 numbers ( 001, 010 and 100 ) having only 1 set bit.
Input: n = 3
Output:

Approach: If k bits are required to represent n then there are k numbers possible as 1 can be positioned at k different positions each time.
Below is the implementation of the above approach

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `// Function to return the required count``int` `count(``int` `n)``{` `    ``// To store the count of numbers``    ``int` `cnt = 0;``    ``int` `p = 1;``    ``while` `(p <= n) {``        ``cnt++;` `        ``// Every power of 2 contains``        ``// only 1 set bit``        ``p *= 2;``    ``}``    ``return` `cnt;``}` `// Driver code``int` `main()``{``    ``int` `n = 7;``    ``cout << count(n);` `    ``return` `0;``}`

## Java

 `// Java implementation of the approach``class` `GFG {` `    ``// Function to return the required count``    ``static` `int` `count(``int` `n)``    ``{` `        ``// To store the count of numbers``        ``int` `cnt = ``0``;``        ``int` `p = ``1``;``        ``while` `(p <= n) {``            ``cnt++;` `            ``// Every power of 2 contains``            ``// only 1 set bit``            ``p *= ``2``;``        ``}``        ``return` `cnt;``    ``}` `    ``// Driver code``    ``public` `static` `void` `main(String args[])``    ``{``        ``int` `n = ``7``;``        ``System.out.print(count(n));``    ``}``}`

## C#

 `// C# implementation of the approach``using` `System;``class` `GFG {` `    ``// Function to return the required count``    ``static` `int` `count(``int` `n)``    ``{` `        ``// To store the count of numbers``        ``int` `cnt = 0;``        ``int` `p = 1;``        ``while` `(p <= n) {``            ``cnt++;` `            ``// Every power of 2 contains``            ``// only 1 set bit``            ``p *= 2;``        ``}``        ``return` `cnt;``    ``}` `    ``// Driver code``    ``public` `static` `void` `Main()``    ``{``        ``int` `n = 7;``        ``Console.Write(count(n));``    ``}``}`

## Python3

 `# Python3 implementation of the approach` `# Function to return the required count``def` `count(n):``    ` `    ``# To store the count of numbers``    ``cnt ``=` `0``    ``p ``=` `1``    ``while` `(p <``=` `n):``        ``cnt ``=` `cnt ``+` `1``        ` `        ``# Every power of 2 contains``        ``# only 1 set bit``        ``p ``*``=` `2``    ``return` `cnt` `# Driver code``n ``=` `7``print``(count(n));`

## PHP

 ``

## Javascript

 ``
Output:

`3`

Time Complexity: O(log n)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live

My Personal Notes arrow_drop_up