Open In App
Related Articles

Count of numbers having only 1 set bit in the range [0, n]

Improve Article
Improve
Save Article
Save
Like Article
Like

Given an integer n, the task is to count the numbers having only 1 set bit in the range [0, n].
Examples: 

Input: n = 7 
Output:
Explanation: 000, 001, 010, 011, 100, 101, 110 and 111 are the binary representation of all the numbers upto 7. And there are only 3 numbers ( 001, 010 and 100 ) having only 1 set bit.

Input: n = 3 
Output:

Approach: If k bits are required to represent n then there are k numbers possible as 1 can be positioned at k different positions each time.
Below is the implementation of the above approach

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the required count
int count(int n)
{
 
    // To store the count of numbers
    int cnt = 0;
    int p = 1;
    while (p <= n) {
        cnt++;
 
        // Every power of 2 contains
        // only 1 set bit
        p *= 2;
    }
    return cnt;
}
 
// Driver code
int main()
{
    int n = 7;
    cout << count(n);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG {
 
    // Function to return the required count
    static int count(int n)
    {
 
        // To store the count of numbers
        int cnt = 0;
        int p = 1;
        while (p <= n) {
            cnt++;
 
            // Every power of 2 contains
            // only 1 set bit
            p *= 2;
        }
        return cnt;
    }
 
    // Driver code
    public static void main(String args[])
    {
        int n = 7;
        System.out.print(count(n));
    }
}


C#




// C# implementation of the approach
using System;
class GFG {
 
    // Function to return the required count
    static int count(int n)
    {
 
        // To store the count of numbers
        int cnt = 0;
        int p = 1;
        while (p <= n) {
            cnt++;
 
            // Every power of 2 contains
            // only 1 set bit
            p *= 2;
        }
        return cnt;
    }
 
    // Driver code
    public static void Main()
    {
        int n = 7;
        Console.Write(count(n));
    }
}


Python3




# Python3 implementation of the approach
 
# Function to return the required count
def count(n):
     
    # To store the count of numbers
    cnt = 0
    p = 1
    while (p <= n):
        cnt = cnt + 1
         
        # Every power of 2 contains
        # only 1 set bit
        p *= 2
    return cnt
 
# Driver code
n = 7
print(count(n));


PHP




<?php
// PHP implementation of the approach
 
// Function to return the required count
function count_t($n)
{
 
    // To store the count of numbers
    $cnt = 0;
    $p = 1;
    while ($p <= $n)
    {
        $cnt++;
 
        // Every power of 2 contains
        // only 1 set bit
        $p *= 2;
    }
    return $cnt;
}
 
// Driver code
$n = 7;
echo count_t($n);
 
// This Code is contributed by ajit.
?>


Javascript




<script>
// Javascript implementation of the approach
 
// Function to return the required count
function count(n)
{
 
    // To store the count of numbers
    var cnt = 0;
    var p = 1;
    while (p <= n) {
        cnt++;
 
        // Every power of 2 contains
        // only 1 set bit
        p *= 2;
    }
    return cnt;
}
 
// Driver code
var n = 7;
document.write(count(n));
 
// This code is contributed by noob2000.
</script>


Output

3

Time Complexity: O(log n)
Auxiliary Space: O(1)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 07 Dec, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials