Skip to content
Related Articles

Related Articles

Count of numbers from the range [L, R] which contains at least one digit that divides K
  • Last Updated : 28 Apr, 2021

Given three positive integers L, R and K.The task is to find the count of all the numbers from the range [L, R] that contains at least one digit which divides the number K.

Examples: 

Input: L = 5, R = 11, K = 10 
Output:
5, 10 and 11 are only such numbers.

Input: L = 32, R = 38, K = 13 
Output:
 

Approach: Initialise count = 0 and for every element in the range [L, R], check if it contains at least one digit that divides K. If yes then increment the count.



Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that returns true if num
// contains at least one digit
// that divides k
bool digitDividesK(int num, int k)
{
    while (num) {
 
        // Get the last digit
        int d = num % 10;
 
        // If the digit is non-zero
        // and it divides k
        if (d != 0 and k % d == 0)
            return true;
 
        // Remove the last digit
        num = num / 10;
    }
 
    // There is no digit in num
    // that divides k
    return false;
}
 
// Function to return the required
// count of elements from the given
// range which contain at least one
// digit that divides k
int findCount(int l, int r, int k)
{
 
    // To store the result
    int count = 0;
 
    // For every number from the range
    for (int i = l; i <= r; i++) {
 
        // If any digit of the current
        // number divides k
        if (digitDividesK(i, k))
            count++;
    }
    return count;
}
 
// Driver code
int main()
{
    int l = 20, r = 35;
    int k = 45;
 
    cout << findCount(l, r, k);
 
    return 0;
}

Java




// Java implementation of the approach
 
class GFG
{
    // Function that returns true if num
    // contains at least one digit
    // that divides k
    static boolean digitDividesK(int num, int k)
    {
        while (num != 0)
        {
     
            // Get the last digit
            int d = num % 10;
     
            // If the digit is non-zero
            // and it divides k
            if (d != 0 && k % d == 0)
                return true;
     
            // Remove the last digit
            num = num / 10;
        }
     
        // There is no digit in num
        // that divides k
        return false;
    }
     
    // Function to return the required
    // count of elements from the given
    // range which contain at least one
    // digit that divides k
    static int findCount(int l, int r, int k)
    {
     
        // To store the result
        int count = 0;
     
        // For every number from the range
        for (int i = l; i <= r; i++)
        {
     
            // If any digit of the current
            // number divides k
            if (digitDividesK(i, k))
                count++;
        }
        return count;
    }
     
    // Driver code
    public static void main(String []args)
    {
        int l = 20, r = 35;
        int k = 45;
     
        System.out.println(findCount(l, r, k));
    }
}
 
// This code is contributed by PrinciRaj1992

Python3




# Python3 implementation of the approach
 
# Function that returns true if num
# contains at least one digit
# that divides k
def digitDividesK(num, k):
    while (num):
 
        # Get the last digit
        d = num % 10
 
        # If the digit is non-zero
        # and it divides k
        if (d != 0 and k % d == 0):
            return True
 
        # Remove the last digit
        num = num // 10
 
    # There is no digit in num
    # that divides k
    return False
 
# Function to return the required
# count of elements from the given
# range which contain at least one
# digit that divides k
def findCount(l, r, k):
 
    # To store the result
    count = 0
 
    # For every number from the range
    for i in range(l, r + 1):
 
        # If any digit of the current
        # number divides k
        if (digitDividesK(i, k)):
            count += 1
 
    return count
 
# Driver code
l = 20
r = 35
k = 45
 
print(findCount(l, r, k))
 
# This code is contributed by Mohit Kumar

C#




// C# implementation of the approach
using System;
 
class GFG
{
    // Function that returns true if num
    // contains at least one digit
    // that divides k
    static bool digitDividesK(int num, int k)
    {
        while (num != 0)
        {
     
            // Get the last digit
            int d = num % 10;
     
            // If the digit is non-zero
            // and it divides k
            if (d != 0 && k % d == 0)
                return true;
     
            // Remove the last digit
            num = num / 10;
        }
     
        // There is no digit in num
        // that divides k
        return false;
    }
     
    // Function to return the required
    // count of elements from the given
    // range which contain at least one
    // digit that divides k
    static int findCount(int l, int r, int k)
    {
     
        // To store the result
        int count = 0;
     
        // For every number from the range
        for (int i = l; i <= r; i++)
        {
     
            // If any digit of the current
            // number divides k
            if (digitDividesK(i, k))
                count++;
        }
        return count;
    }
     
    // Driver code
    public static void Main()
    {
        int l = 20, r = 35;
        int k = 45;
     
        Console.WriteLine(findCount(l, r, k));
    }
}
 
// This code is contributed by AnkitRai01

Javascript




<script>
 
// Javascript implementation of the approach
 
// Function that returns true if num
// contains at least one digit
// that divides k
function digitDividesK(num, k)
{
    while (num)
    {
         
        // Get the last digit
        let d = num % 10;
 
        // If the digit is non-zero
        // and it divides k
        if (d != 0 && k % d == 0)
            return true;
 
        // Remove the last digit
        num = parseInt(num / 10);
    }
 
    // There is no digit in num
    // that divides k
    return false;
}
 
// Function to return the required
// count of elements from the given
// range which contain at least one
// digit that divides k
function findCount(l, r, k)
{
 
    // To store the result
    let count = 0;
 
    // For every number from the range
    for(let i = l; i <= r; i++)
    {
         
        // If any digit of the current
        // number divides k
        if (digitDividesK(i, k))
            count++;
    }
    return count;
}
 
// Driver code
let l = 20, r = 35;
let k = 45;
 
document.write(findCount(l, r, k));
 
// This code is contributed by souravmahato348
 
</script>
Output: 
10

 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :