Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Count of non-decreasing Arrays arr3[] such that arr1[i] <= arr3[i] <= arr2[i]

  • Last Updated : 16 Dec, 2021

Given two arrays arr1[] and arr2[] having N integers in non-decreasing order, the task is to find the count of non-decreasing arrays arr3[] of length N such that arr1[i] <= arr3[i] <= arr2[i] for all values of i in range [0, N).

Examples:

Input: arr1[] = {1, 1}, arr2[] = {2, 3}
Output: 5
Explanation: The 5 possible arrays that follow the required conditions are {1, 1}, {1, 2}, {1, 3}, {2, 2}, {2, 3}

Input: ranges[] = {{-12, 15}, {3, 9}, {-5, -2}, {20, 25}, {16, 20}}
Output: 247

Approach: The given problem can be solved using Dynamic Programming. Consider a 2D array dp[][] such that dp[i][j] represents the count of arrays of length i such that the ith element is j. Initialize all the elements of the dp array as 0 and dp[0][0] as 1. Upon observation, the DP relation of the above problem can be stated as follows:

dp[i][j] = \sum_{x = arr1[i]}^{arr2[i]}dp[i-1][x] + dp[i][j-1]

Therefore, using the above relation, calculate the value of dp[i][j] for each i in the range [0, N] and for each j in the range [0, M] where M represents the maximum integer in both the given arrays arr1[] and arr2[]. Hence, the value stored in dp[N][M] is the required answer.

Below is the implementation of the above approach:

C++




// C++ Program of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the count of
// valid sorted arrays
int arrCount(int arr1[], int arr2[], int N)
{
 
    // Maximum possible value
    // of arr1 and arr2
    int M = 1000;
 
    // Stores the dp states
    vector<vector<int> > dp(
        N + 1,
        vector<int>(M + 1, 0));
 
    // Initial condition
    dp[0][0] = 1;
 
    // Loop to iterate over range [0, N]
    for (int i = 0; i <= N; i++) {
 
        // Loop to iterate over
        // the range [0, M]
        for (int j = 0; j < M; j++) {
            dp[i][j + 1] += dp[i][j];
        }
 
        // If current index is not
        // the final index
        if (i != N) {
 
            // Loop to iterate in the
            // range [arr1[i], arr2[i]]
            for (int j = arr1[i]; j <= arr2[i]; j++)
                dp[i + 1][j] += dp[i][j];
        }
    }
 
    // Return Answer
    return dp[N][M];
}
 
// Driver Code
int main()
{
    int arr1[] = { 1, 1 };
    int arr2[] = { 2, 3 };
    int N = sizeof(arr1) / sizeof(int);
 
    cout << arrCount(arr1, arr2, N);
 
    return 0;
}

Java




// Java Program of the above approach
import java.util.*;
 
public class GFG{
     
// Function to find the count of
// valid sorted arrays
static int arrCount(int[] arr1, int[] arr2, int N)
{
     
    // Maximum possible value
    // of arr1 and arr2
    int M = 1000;
 
    // Stores the dp states
    int[][] dp = new int[N + 1][M + 1];
 
    // Initial condition
    dp[0][0] = 1;
 
    // Loop to iterate over range [0, N]
    for(int i = 0; i <= N; i++)
    {
         
        // Loop to iterate over
        // the range [0, M]
        for(int j = 0; j < M; j++)
        {
            dp[i][j + 1] += dp[i][j];
        }
 
        // If current index is not
        // the final index
        if (i != N)
        {
             
            // Loop to iterate in the
            // range [arr1[i], arr2[i]]
            for(int j = arr1[i]; j <= arr2[i]; j++)
                dp[i + 1][j] += dp[i][j];
        }
    }
 
    // Return Answer
    return dp[N][M];
}
 
// Driver Code
public static void main(String args[])
{
    int[] arr1 = { 1, 1 };
    int[] arr2 = { 2, 3 };
    int N = arr1.length;
 
    System.out.println(arrCount(arr1, arr2, N));
}
}
 
// This code is contributed by Samim Hossain Mondal.

Python3




# Python Program to implement
# the above approach
 
# Function to find the count of
# valid sorted arrays
def arrCount(arr1, arr2, N):
 
    # Maximum possible value
    # of arr1 and arr2
    M = 1000
 
    # Stores the dp states
    dp = [0] * (N + 1)
    for i in range(len(dp)):
        dp[i] = [0] * (M + 1)
 
    # Initial condition
    dp[0][0] = 1
 
    # Loop to iterate over range [0, N]
    for i in range(N + 1):
 
        # Loop to iterate over
        # the range [0, M]
        for j in range(M):
            dp[i][j + 1] += dp[i][j]
 
        # If current index is not
        # the final index
        if (i != N):
 
            # Loop to iterate in the
            # range [arr1[i], arr2[i]]
            for j in range(arr1[i], arr2[i] + 1):
                dp[i + 1][j] += dp[i][j]
 
    # Return Answer
    return dp[N][M]
 
# Driver Code
arr1 = [1, 1]
arr2 = [2, 3]
N = len(arr1)
 
print(arrCount(arr1, arr2, N))
 
# This code is contributed by Saurabh Jaiswal

C#




// C# Program of the above approach
using System;
 
class GFG{
     
// Function to find the count of
// valid sorted arrays
static int arrCount(int[] arr1, int[] arr2, int N)
{
     
    // Maximum possible value
    // of arr1 and arr2
    int M = 1000;
 
    // Stores the dp states
    int[,] dp = new int[N + 1, M + 1];
 
    // Initial condition
    dp[0, 0] = 1;
 
    // Loop to iterate over range [0, N]
    for(int i = 0; i <= N; i++)
    {
         
        // Loop to iterate over
        // the range [0, M]
        for(int j = 0; j < M; j++)
        {
            dp[i, j + 1] += dp[i, j];
        }
 
        // If current index is not
        // the final index
        if (i != N)
        {
             
            // Loop to iterate in the
            // range [arr1[i], arr2[i]]
            for(int j = arr1[i]; j <= arr2[i]; j++)
                dp[i + 1, j] += dp[i, j];
        }
    }
 
    // Return Answer
    return dp[N, M];
}
 
// Driver Code
public static void Main()
{
    int[] arr1 = { 1, 1 };
    int[] arr2 = { 2, 3 };
    int N = arr1.Length;
 
    Console.WriteLine(arrCount(arr1, arr2, N));
}
}
 
// This code is contributed by ukasp

Javascript




<script>
    // JavaScript Program to implement
    // the above approach
 
    // Function to find the count of
    // valid sorted arrays
    function arrCount(arr1, arr2, N) {
 
        // Maximum possible value
        // of arr1 and arr2
        let M = 1000;
 
        // Stores the dp states
        let dp = new Array(N + 1);
        for (let i = 0; i < dp.length; i++) {
            dp[i] = new Array(M + 1).fill(0);
        }
 
        // Initial condition
        dp[0][0] = 1;
 
        // Loop to iterate over range [0, N]
        for (let i = 0; i <= N; i++) {
 
            // Loop to iterate over
            // the range [0, M]
            for (let j = 0; j < M; j++) {
                dp[i][j + 1] += dp[i][j];
            }
 
            // If current index is not
            // the final index
            if (i != N) {
 
                // Loop to iterate in the
                // range [arr1[i], arr2[i]]
                for (let j = arr1[i]; j <= arr2[i]; j++)
                    dp[i + 1][j] += dp[i][j];
            }
        }
 
        // Return Answer
        return dp[N][M];
    }
 
    // Driver Code
 
    let arr1 = [1, 1];
    let arr2 = [2, 3];
    let N = arr1.length;
 
    document.write(arrCount(arr1, arr2, N));
 
// This code is contributed by Potta Lokesh
</script>
Output
5

Time Complexity: O(N * M), where M represents the maximum value of the integers in the array arr1[] and arr2[].
Auxiliary Space: O(N * M)


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!