# Count of N-digit Palindrome numbers

• Last Updated : 01 Apr, 2021

Given an integer N, the task is to find the count of N-digit Palindrome numbers.
Examples:

Input: N = 1
Output:
{1, 2, 3, 4, 5, 6, 7, 8, 9} are all the possible
single digit palindrome numbers.
Input: N = 2
Output:

Approach: The first digit can be any of the 9 digits (not 0) and the last digit will have to be same as the first in order for it to be palindrome, the second and the second last digit can be any of the 10 digits and same goes for the rest of the digits. So, for any value of N, the count of N-digit palindromes will be 9 * 10(N – 1) / 2.
Below is the implementation of the above approach:

## C++

 // C++ implementation of the approach#include using namespace std; // Function to return the count// of N-digit palindrome numbersint nDigitPalindromes(int n){    return (9 * pow(10, (n - 1) / 2));} // Driver codeint main(){    int n = 2;     cout << nDigitPalindromes(n);     return 0;}

## Java

 // Java implementation of the approachclass GFG{     // Function to return the count// of N-digit palindrome numbersstatic int nDigitPalindromes(int n){    return (9 * (int)Math.pow(10,           (n - 1) / 2));} // Driver codepublic static void main(String []args){    int n = 2;     System.out.println(nDigitPalindromes(n));}} // This code is contributed by Code_Mech

## Python3

 # Python3 implementation of the approach # Function to return the count# of N-digit palindrome numbersdef nDigitPalindromes(n) :     return (9 * pow(10, (n - 1) // 2)); # Driver codeif __name__ == "__main__" :     n = 2;     print(nDigitPalindromes(n)); # This code is contributed by AnkitRai01

## C#

 // C# implementation of the approachusing System;     class GFG{     // Function to return the count// of N-digit palindrome numbersstatic int nDigitPalindromes(int n){    return (9 * (int)Math.Pow(10,           (n - 1) / 2));} // Driver codepublic static void Main(String []args){    int n = 2;     Console.WriteLine(nDigitPalindromes(n));}} // This code is contributed by Rajput-Ji

## Javascript


Output:
9

My Personal Notes arrow_drop_up