# Count of N-digit Palindrome numbers

Given an integer **N**, the task is to find the count of **N-digit** Palindrome numbers.**Examples:**

Input:N = 1Output:9

{1, 2, 3, 4, 5, 6, 7, 8, 9} are all the possible

single digit palindrome numbers.Input:N = 2Output:9

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the

DSA Self Paced Courseat a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please referComplete Interview Preparation Course.In case you wish to attend

live classeswith experts, please referDSA Live Classes for Working ProfessionalsandCompetitive Programming Live for Students.

**Approach:** The first digit can be any of the **9** digits (not 0) and the last digit will have to be same as the first in order for it to be palindrome, the second and the second last digit can be any of the **10** digits and same goes for the rest of the digits. So, for any value of **N**, the count of **N-digit** palindromes will be **9 * 10 ^{(N – 1) / 2}**.

Below is the implementation of the above approach:

## C++

`// C++ implementation of the approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to return the count` `// of N-digit palindrome numbers` `int` `nDigitPalindromes(` `int` `n)` `{` ` ` `return` `(9 * ` `pow` `(10, (n - 1) / 2));` `}` `// Driver code` `int` `main()` `{` ` ` `int` `n = 2;` ` ` `cout << nDigitPalindromes(n);` ` ` `return` `0;` `}` |

## Java

`// Java implementation of the approach` `class` `GFG` `{` ` ` `// Function to return the count` `// of N-digit palindrome numbers` `static` `int` `nDigitPalindromes(` `int` `n)` `{` ` ` `return` `(` `9` `* (` `int` `)Math.pow(` `10` `,` ` ` `(n - ` `1` `) / ` `2` `));` `}` `// Driver code` `public` `static` `void` `main(String []args)` `{` ` ` `int` `n = ` `2` `;` ` ` `System.out.println(nDigitPalindromes(n));` `}` `}` `// This code is contributed by Code_Mech` |

## Python3

`# Python3 implementation of the approach` `# Function to return the count` `# of N-digit palindrome numbers` `def` `nDigitPalindromes(n) :` ` ` `return` `(` `9` `*` `pow` `(` `10` `, (n ` `-` `1` `) ` `/` `/` `2` `));` `# Driver code` `if` `__name__ ` `=` `=` `"__main__"` `:` ` ` `n ` `=` `2` `;` ` ` `print` `(nDigitPalindromes(n));` `# This code is contributed by AnkitRai01` |

## C#

`// C# implementation of the approach` `using` `System;` ` ` `class` `GFG` `{` ` ` `// Function to return the count` `// of N-digit palindrome numbers` `static` `int` `nDigitPalindromes(` `int` `n)` `{` ` ` `return` `(9 * (` `int` `)Math.Pow(10,` ` ` `(n - 1) / 2));` `}` `// Driver code` `public` `static` `void` `Main(String []args)` `{` ` ` `int` `n = 2;` ` ` `Console.WriteLine(nDigitPalindromes(n));` `}` `}` `// This code is contributed by Rajput-Ji` |

## Javascript

`<script>` `// Javascript implementation of the approach` `// Function to return the count` `// of N-digit palindrome numbers` `function` `nDigitPalindromes(n)` `{` ` ` `return` `(9 * Math.pow(10, parseInt((n - 1) / 2)));` `}` `// Driver code` `var` `n = 2;` `document.write(nDigitPalindromes(n));` `</script>` |

**Output:**

9