Skip to content
Related Articles

Related Articles

Improve Article

Count of N-digit numbers with all distinct digits

  • Difficulty Level : Hard
  • Last Updated : 01 Apr, 2021

Given an integer N, the task is to find the count of N-digit numbers with all distinct digits.
Examples: 
 

Input: N = 1 
Output:
1, 2, 3, 4, 5, 6, 7, 8 and 9 are the 1-digit numbers 
with all distinct digits.
Input: N = 3 
Output: 648 
 

 

Approach: If N > 10 i.e. there will be atleast one digit which will be repeating hence for such cases the answer will be 0 else for the values of N = 1, 2, 3, …, 9, a series will be formed as 9, 81, 648, 4536, 27216, 136080, 544320, … whose Nth term will be 9 * 9! / (10 – N)!.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the factorial of n
int factorial(int n)
{
    if (n == 0)
        return 1;
    return n * factorial(n - 1);
}
 
// Function to return the count
// of n-digit numbers with
// all distinct digits
int countNum(int n)
{
    if (n > 10)
        return 0;
    return (9 * factorial(9)
            / factorial(10 - n));
}
 
// Driver code
int main()
{
    int n = 3;
 
    cout << countNum(n);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
     
    // Function to return the factorial of n
    static int factorial(int n)
    {
        if (n == 0)
            return 1;
        return n * factorial(n - 1);
    }
     
    // Function to return the count
    // of n-digit numbers with
    // all distinct digits
    static int countNum(int n)
    {
        if (n > 10)
            return 0;
        return (9 * factorial(9) /
                    factorial(10 - n));
    }
     
    // Driver code
    public static void main(String []args)
    {
        int n = 3;
        System.out.println(countNum(n));
    }
}
 
// This code is contributed by Srathore

Python3




# Python3 implementation of the approach
 
# Function to return the factorial of n
def factorial(n) :
 
    if (n == 0) :
        return 1;
    return n * factorial(n - 1);
 
# Function to return the count
# of n-digit numbers with
# all distinct digits
def countNum(n) :
    if (n > 10) :
        return 0;
         
    return (9 * factorial(9) //
                factorial(10 - n));
 
# Driver code
if __name__ == "__main__" :
 
    n = 3;
 
    print(countNum(n));
     
# This code is contributed by AnkitRai01

C#




// C# implementation of the approach
using System;
                     
class GFG
{
     
    // Function to return the factorial of n
    static int factorial(int n)
    {
        if (n == 0)
            return 1;
        return n * factorial(n - 1);
    }
     
    // Function to return the count
    // of n-digit numbers with
    // all distinct digits
    static int countNum(int n)
    {
        if (n > 10)
            return 0;
        return (9 * factorial(9) /
                    factorial(10 - n));
    }
     
    // Driver code
    public static void Main(String []args)
    {
        int n = 3;
        Console.WriteLine(countNum(n));
    }
}
 
// This code is contributed by Princi Singh

Javascript




<script>
 
 
// Javascript implementation of the approach
 
// Function to return the factorial of n
function factorial(n)
{
    if (n == 0)
        return 1;
    return n * factorial(n - 1);
}
 
// Function to return the count
// of n-digit numbers with
// all distinct digits
function countNum(n)
{
    if (n > 10)
        return 0;
    return (9 * factorial(9)
            / factorial(10 - n));
}
 
// Driver code
var n = 3;
document.write(countNum(n));
 
// This code is contributed by rutvik_56.
</script>
Output: 



648

 

Time Complexity: O(n)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :