Count of N-digit numbers with all distinct digits

Given an integer N, the task is to find the count of N-digit numbers with all distinct digits.

Examples:

Input: N = 1
Output: 9
1, 2, 3, 4, 5, 6, 7, 8 and 9 are the 1-digit numbers
with all distinct digits.



Input: N = 3
Output: 648

Approach: If N > 10 i.e. there will be atleast one digit which will be repeating hence for such cases the answer will be 0 else for the values of N = 1, 2, 3, …, 9, a series will be formed as 9, 81, 648, 4536, 27216, 136080, 544320, … whose Nth term will be 9 * 9! / (10 – N)!.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the factorial of n
int factorial(int n)
{
    if (n == 0)
        return 1;
    return n * factorial(n - 1);
}
  
// Function to return the count
// of n-digit numbers with
// all distinct digits
int countNum(int n)
{
    if (n > 10)
        return 0;
    return (9 * factorial(9)
            / factorial(10 - n));
}
  
// Driver code
int main()
{
    int n = 3;
  
    cout << countNum(n);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
class GFG
      
    // Function to return the factorial of n
    static int factorial(int n)
    {
        if (n == 0)
            return 1;
        return n * factorial(n - 1);
    }
      
    // Function to return the count
    // of n-digit numbers with
    // all distinct digits
    static int countNum(int n)
    {
        if (n > 10)
            return 0;
        return (9 * factorial(9) / 
                    factorial(10 - n));
    }
      
    // Driver code
    public static void main(String []args)
    {
        int n = 3;
        System.out.println(countNum(n)); 
    }
}
  
// This code is contributed by Srathore

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach 
  
# Function to return the factorial of n 
def factorial(n) : 
  
    if (n == 0) :
        return 1
    return n * factorial(n - 1); 
  
# Function to return the count 
# of n-digit numbers with 
# all distinct digits 
def countNum(n) :
    if (n > 10) : 
        return 0
          
    return (9 * factorial(9) // 
                factorial(10 - n)); 
  
# Driver code 
if __name__ == "__main__"
  
    n = 3
  
    print(countNum(n)); 
      
# This code is contributed by AnkitRai01

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
                      
class GFG
      
    // Function to return the factorial of n
    static int factorial(int n)
    {
        if (n == 0)
            return 1;
        return n * factorial(n - 1);
    }
      
    // Function to return the count
    // of n-digit numbers with
    // all distinct digits
    static int countNum(int n)
    {
        if (n > 10)
            return 0;
        return (9 * factorial(9) / 
                    factorial(10 - n));
    }
      
    // Driver code
    public static void Main(String []args)
    {
        int n = 3;
        Console.WriteLine(countNum(n)); 
    }
}
  
// This code is contributed by Princi Singh

chevron_right


Output:

648

Time Complexity: O(n)



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.