Given two integers N and K, the task is to find the total count of N-digit number such that the sum of every K consecutive digits of the number is equal.
Examples:
Input: N = 2, K = 1
Output: 9
Explanation:
The numbers are 11, 22, 33, 44, 55, 66, 77, 88, 99 with sum of every 1 consecutive digits equal to 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively.
Input: N = 3, K = 2
Output: 90
Naive Approach: Iterate for all possible N-digit numbers and calculate the sum of every K consecutive digits of the number. If all the sums are equal then include this is the count else check for the next number.
Below is the implementation of the above approach:
C++
#include<bits/stdc++.h>
using namespace std;
int countDigitSum( int N, int K)
{
int l = ( int ) pow (10, N - 1),
r = ( int ) pow (10, N) - 1;
int count = 0;
for ( int i = l; i <= r; i++)
{
int num = i;
int digits[N];
for ( int j = N - 1; j >= 0; j--)
{
digits[j] = num % 10;
num /= 10;
}
int sum = 0, flag = 0;
for ( int j = 0; j < K; j++)
sum += digits[j];
for ( int j = 1; j < N - K + 1; j++)
{
int curr_sum = 0;
for ( int m = j; m < j + K; m++)
curr_sum += digits[m];
if (sum != curr_sum)
{
flag = 1;
break ;
}
}
if (flag == 0)
{
count++;
}
}
return count;
}
int main()
{
int N = 2, K = 1;
cout << countDigitSum(N, K);
return 0;
}
|
C
#include <math.h>
#include <stdio.h>
int countDigitSum( int N, int K)
{
int l = ( int ) pow (10, N - 1),
r = ( int ) pow (10, N) - 1;
int count = 0;
for ( int i = l; i <= r; i++)
{
int num = i;
int digits[N];
for ( int j = N - 1; j >= 0; j--)
{
digits[j] = num % 10;
num /= 10;
}
int sum = 0, flag = 0;
for ( int j = 0; j < K; j++)
sum += digits[j];
for ( int j = 1; j < N - K + 1; j++)
{
int curr_sum = 0;
for ( int m = j; m < j + K; m++)
curr_sum += digits[m];
if (sum != curr_sum)
{
flag = 1;
break ;
}
}
if (flag == 0)
{
count++;
}
}
return count;
}
int main()
{
int N = 2, K = 1;
printf ( "%d" , countDigitSum(N, K));
return 0;
}
|
Java
class GFG {
static int countDigitSum( int N, int K)
{
int l = ( int )Math.pow( 10 , N - 1 ),
r = ( int )Math.pow( 10 , N) - 1 ;
int count = 0 ;
for ( int i = l; i <= r; i++) {
int num = i;
int digits[] = new int [N];
for ( int j = N - 1 ;
j >= 0 ; j--) {
digits[j] = num % 10 ;
num /= 10 ;
}
int sum = 0 , flag = 0 ;
for ( int j = 0 ; j < K; j++)
sum += digits[j];
for ( int j = 1 ;
j < N - K + 1 ; j++) {
int curr_sum = 0 ;
for ( int m = j;
m < j + K; m++) {
curr_sum += digits[m];
}
if (sum != curr_sum) {
flag = 1 ;
break ;
}
}
if (flag == 0 ) {
count++;
}
}
return count;
}
public static void
main(String[] args)
{
int N = 2 , K = 1 ;
System.out.print(countDigitSum(N, K));
}
}
|
Python3
def countDigitSum(N, K):
l = pow ( 10 , N - 1 )
r = pow ( 10 , N) - 1
count = 0
for i in range (l, r + 1 ):
num = i
digits = [ 0 ] * N
for j in range (N - 1 , - 1 , - 1 ):
digits[j] = num % 10
num / / = 10
sum = 0
flag = 0
for j in range ( 0 , K):
sum + = digits[j]
for j in range ( 1 , N - K + 1 ):
curr_sum = 0
for m in range (j, j + K):
curr_sum + = digits[m]
if ( sum ! = curr_sum):
flag = 1
break
if (flag = = 0 ):
count + = 1
return count
N = 2
K = 1
print (countDigitSum(N, K))
|
C#
using System;
class GFG{
static int countDigitSum( int N, int K)
{
int l = ( int )Math.Pow(10, N - 1),
r = ( int )Math.Pow(10, N) - 1;
int count = 0;
for ( int i = l; i <= r; i++)
{
int num = i;
int [] digits = new int [N];
for ( int j = N - 1; j >= 0; j--)
{
digits[j] = num % 10;
num /= 10;
}
int sum = 0, flag = 0;
for ( int j = 0; j < K; j++)
sum += digits[j];
for ( int j = 1; j < N - K + 1; j++)
{
int curr_sum = 0;
for ( int m = j; m < j + K; m++)
{
curr_sum += digits[m];
}
if (sum != curr_sum)
{
flag = 1;
break ;
}
}
if (flag == 0)
{
count++;
}
}
return count;
}
public static void Main()
{
int N = 2, K = 1;
Console.Write(countDigitSum(N, K));
}
}
|
Javascript
<script>
function countDigitSum(N, K)
{
let l = parseInt(Math.pow(10, N - 1)),
r = parseInt(Math.pow(10, N) - 1);
let count = 0;
for (let i = l; i <= r; i++)
{
let num = i;
let digits = new Array(N);
for (let j = N - 1; j >= 0; j--)
{
digits[j] = num % 10;
num = parseInt(num/10);
}
let sum = 0, flag = 0;
for (let j = 0; j < K; j++)
sum += digits[j];
for (let j = 1; j < N - K + 1; j++)
{
let curr_sum = 0;
for (let m = j; m < j + K; m++)
curr_sum += digits[m];
if (sum != curr_sum)
{
flag = 1;
break ;
}
}
if (flag == 0)
{
count++;
}
}
return count;
}
let N = 2, K = 1;
document.write(countDigitSum(N, K));
</script>
|
Time Complexity: O(10N * N * K)
Auxiliary Space: O(N)
Efficient Approach: To optimize the above naive approach the idea is to use the Sliding window technique to check if the sum of K-Consecutive digits of the number are equal or not. Below are the steps:
- Get the range of numbers i.e., 10N-1 to 10N.
- For each number in the above range, consider a window of length K and find the sum of each digit. Store this sum as S.
- Find the sum of the next K digits using the sliding window by including the next K digits in the sum and remove the previous K digits from the sum.
- If the sum obtained is equal to the above sum S then check for the next K digits.
- Otherwise, repeat the above step for the next numbers.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int countDigitSum( int N, int K)
{
int l = ( int ) pow (10, N - 1),
r = ( int ) pow (10, N) - 1;
int count = 0;
for ( int i = l; i <= r; i++)
{
int num = i;
int digits[N];
for ( int j = N - 1; j >= 0; j--)
{
digits[j] = num % 10;
num /= 10;
}
int sum = 0, flag = 0;
for ( int j = 0; j < K; j++)
sum += digits[j];
for ( int j = K; j < N; j++)
{
if (sum - digits[j - K] +
digits[j] != sum)
{
flag = 1;
break ;
}
}
if (flag == 0)
count++;
}
return count;
}
int main()
{
int N = 2, K = 1;
cout<< countDigitSum(N, K)<<endl;
return 0;
}
|
C
#include <stdio.h>
#include <math.h>
int countDigitSum( int N, int K)
{
int l = ( int ) pow (10, N - 1),
r = ( int ) pow (10, N) - 1;
int count = 0;
for ( int i = l; i <= r; i++)
{
int num = i;
int digits[N];
for ( int j = N - 1; j >= 0; j--)
{
digits[j] = num % 10;
num /= 10;
}
int sum = 0, flag = 0;
for ( int j = 0; j < K; j++)
sum += digits[j];
for ( int j = K; j < N; j++)
{
if (sum - digits[j - K] +
digits[j] != sum)
{
flag = 1;
break ;
}
}
if (flag == 0)
count++;
}
return count;
}
int main()
{
int N = 2, K = 1;
printf ( "%d" , countDigitSum(N, K));
return 0;
}
|
Java
class GFG {
static int countDigitSum( int N, int K)
{
int l = ( int )Math.pow( 10 , N - 1 ),
r = ( int )Math.pow( 10 , N) - 1 ;
int count = 0 ;
for ( int i = l; i <= r; i++) {
int num = i;
int digits[] = new int [N];
for ( int j = N - 1 ; j >= 0 ; j--) {
digits[j] = num % 10 ;
num /= 10 ;
}
int sum = 0 , flag = 0 ;
for ( int j = 0 ; j < K; j++)
sum += digits[j];
for ( int j = K; j < N; j++) {
if (sum - digits[j - K]
+ digits[j]
!= sum) {
flag = 1 ;
break ;
}
}
if (flag == 0 ) {
count++;
}
}
return count;
}
public static void main(String[] args)
{
int N = 2 , K = 1 ;
System.out.print(countDigitSum(N, K));
}
}
|
Python3
def countDigitSum(N, K):
l = pow ( 10 , N - 1 );
r = pow ( 10 , N) - 1 ;
count = 0 ;
for i in range ( 1 , r + 1 ):
num = i;
digits = [ 0 ] * (N);
for j in range (N - 1 ,
0 , - 1 ):
digits[j] = num % 10 ;
num / / = 10 ;
sum = 0 ;
flag = 0 ;
for j in range ( 0 , K):
sum + = digits[j];
for j in range (K, N):
if ( sum - digits[j - K] +
digits[j] ! = sum ):
flag = 1 ;
break ;
if (flag = = 0 ):
count + = 1 ;
return count;
if __name__ = = '__main__' :
N = 2 ;
K = 1 ;
print (countDigitSum(N, K));
|
C#
using System;
class GFG{
static int countDigitSum( int N, int K)
{
int l = ( int )Math.Pow(10, N - 1),
r = ( int )Math.Pow(10, N) - 1;
int count = 0;
for ( int i = l; i <= r; i++)
{
int num = i;
int [] digits = new int [N];
for ( int j = N - 1; j >= 0; j--)
{
digits[j] = num % 10;
num /= 10;
}
int sum = 0, flag = 0;
for ( int j = 0; j < K; j++)
sum += digits[j];
for ( int j = K; j < N; j++)
{
if (sum - digits[j - K] +
digits[j] != sum)
{
flag = 1;
break ;
}
}
if (flag == 0)
{
count++;
}
}
return count;
}
public static void Main()
{
int N = 2, K = 1;
Console.Write(countDigitSum(N, K));
}
}
|
Javascript
<script>
function countDigitSum(N , K)
{
var l = parseInt( Math.pow(10, N - 1)),
var r = parseInt( Math.pow(10, N) - 1);
var count = 0;
for (i = l; i <= r; i++) {
var num = i;
var digits = Array(N).fill(0);
for (j = N - 1; j >= 0; j--) {
digits[j] = num % 10;
num = parseInt(num/10);
}
var sum = 0, flag = 0;
for (j = 0; j < K; j++)
sum += digits[j];
for (j = K; j < N; j++) {
if (sum - digits[j - K] + digits[j] != sum) {
flag = 1;
break ;
}
}
if (flag == 0) {
count++;
}
}
return count;
}
var N = 2, K = 1;
document.write(countDigitSum(N, K));
</script>
|
Time Complexity: O(10N *N)
Auxiliary Space: O(N)