Count of matrices (of different orders) with given number of elements

Given a number N denotes the total number of elements in a matrix, the task is to print all possible order of matrix. An order is a pair (m, n) of integers where m is number of rows and n is number of columns. For example, if the number of elements is 8 then all possible orders are:
(1, 8), (2, 4), (4, 2), (8, 1).

Examples:

Input: N = 8
Output: (1, 2) (2, 4) (4, 2) (8, 1)

Input: N = 100
Output:
(1, 100) (2, 50) (4, 25) (5, 20) (10, 10) (20, 5) (25, 4) (50, 2) (100, 1)

Approach:
A matrix is said to be of order m x n if it has m rows and n columns. The total number of elements in a matrix is equal to (m*n). So we start from 1 and check one by one if it divides N(the total number of elements). If it divides, it will be one possible order.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the above approach
#include <iostream>
using namespace std;
  
// Function to print all possible order
void printAllOrder(int n)
{
    // total number of elements in a matrix 
    // of order m * n is equal (m*n)
    // where m is number of rows and n is 
    // number of columns
    for (int i = 1; i <= n; i++) {
  
        // if n is divisible by i then i
        // and n/i will be the one
        // possible order of the matrix
        if (n % i == 0) {
  
            // print the given format
            cout << i << " " << n / i << endl;
        }
    }
}
  
// Driver code
int main()
{
    int n = 10;
    printAllOrder(n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the above approach
  
  
class GFG
    {
    // Function to print all possible order
    static void printAllOrder(int n)
    {
        // total number of elements in a matrix 
        // of order m * n is equal (m*n)
        // where m is number of rows and n is 
        // number of columns
        for (int i = 1; i <= n; i++) {
      
            // if n is divisible by i then i
            // and n/i will be the one
            // possible order of the matrix
            if (n % i == 0) {
      
                // print the given format
                System.out.println( i + " " + n / i );
            }
        }
    }
      
    // Driver code
    public static void main(String []args)
    {
        int n = 10;
        printAllOrder(n);
          
    }
  
}
  
  
// This code is contributed by ihritik

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python implementation of the above approach
  
# Function to print all possible order
def printAllOrder(n):
  
    # total number of elements in a matrix 
    # of order m * n is equal (m*n)
    # where m is number of rows and n is 
    # number of columns
    for i in range(1,n+1):
  
        # if n is divisible by i then i
        # and n/i will be the one
        # possible order of the matrix
        if (n % i == 0) :
  
            # print the given format
            print( i ,n // i )
          
      
  
  
# Driver code
n = 10
printAllOrder(n)
  
  
# This code is contributed by ihritik

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the above approach
  
using System;
class GFG
    {
    // Function to print all possible order
    static void printAllOrder(int n)
    {
        // total number of elements in a matrix 
        // of order m * n is equal (m*n)
        // where m is number of rows and n is 
        // number of columns
        for (int i = 1; i <= n; i++) {
      
            // if n is divisible by i then i
            // and n/i will be the one
            // possible order of the matrix
            if (n % i == 0) {
      
                // print the given format
                Console.WriteLine( i + " " + n / i );
            }
        }
    }
      
    // Driver code
    public static void Main()
    {
        int n = 10;
        printAllOrder(n);
          
    }
  
}
  
// This code is contributed by ihritik

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of the above approach 
  
// Function to print all possible order 
function printAllOrder($n
    // total number of elements in a matrix 
    // of order m * n is equal (m*n) 
    // where m is number of rows and n is 
    // number of columns 
    for ($i = 1; $i <= $n; $i++) 
    
  
        // if n is divisible by i then i 
        // and n/i will be the one 
        // possible order of the matrix 
        if ($n % $i == 0) 
        
  
            // print the given format 
            echo $i, " ", ($n / $i), "\n"
        
    
  
// Driver code 
$n = 10; 
printAllOrder($n); 
  
// This code is contributed by Ryuga
?>

chevron_right


Output:

1 10
2 5
5 2
10 1


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : ihritik, AnkitRai01



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.