# Count of interesting primes upto N

Given a number N, the task is to find the number of interesting primes less than equal to N.

An interesting prime is any prime number which can be written as a2 + b4, where a and b are positive integers. For e.g. The smallest interesting prime number is 2 = 12 + 14.

Examples:

Input: N = 10
Output: 2
2 = 12 + 14
5 = 22 + 14
Both are interesting primes less than equal to 10

Input: N = 1000
Output: 28

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Naive Approach:

1. Iterate through all numbers from 1 to N.
2. For each number, check whether its prime or not.
3. If it is prime, then check whether it can be represented as a2 + b4 by:
• Iterate through all possible values of b from 1 to N1/4.
• For each value of b, check whether N – b4 is a perfect square or not (i.e it can be a2 or not).

Below is the implementation of the above approach:

## C++

 `// C++ program to find the number ` `// of interesting primes up to N ` ` `  `#include ` `using` `namespace` `std; ` ` `  `// Function to check if a number ` `// is prime or not ` `bool` `isPrime(``int` `n) ` `{ ` ` `  `    ``int` `flag = 1; ` ` `  `    ``// If n is divisible by any ` `    ``// number between 2 and sqrt(n), ` `    ``// it is not prime ` `    ``for` `(``int` `i = 2; i * i <= n; i++) { ` `        ``if` `(n % i == 0) { ` `            ``flag = 0; ` `            ``break``; ` `        ``} ` `    ``} ` ` `  `    ``return` `(flag == 1 ? ``true` `: ``false``); ` `} ` ` `  `// Function to check if a number ` `// is perfet square or not ` `bool` `isPerfectSquare(``int` `x) ` `{ ` `    ``// Find floating point value of ` `    ``// square root of x. ` `    ``long` `double` `sr = ``sqrt``(x); ` ` `  `    ``// If square root is an integer ` `    ``return` `((sr - ``floor``(sr)) == 0); ` `} ` ` `  `// Function to find the number of interesting ` `// primes less than equal to N. ` `int` `countInterestingPrimes(``int` `n) ` `{ ` ` `  `    ``int` `answer = 0; ` `    ``for` `(``int` `i = 2; i <= n; i++) { ` ` `  `        ``// Check whether the number ` `        ``// is prime or not ` `        ``if` `(isPrime(i)) { ` ` `  `            ``// Iterate for values of b ` `            ``for` `(``int` `j = 1; ` `                 ``j * j * j * j <= i; ` `                 ``j++) { ` ` `  `                ``// Check condition for a ` `                ``if` `( ` `                    ``isPerfectSquare( ` `                        ``i - j * j * j * j)) { ` `                    ``answer++; ` `                    ``break``; ` `                ``} ` `            ``} ` `        ``} ` `    ``} ` ` `  `    ``// Return the required answer ` `    ``return` `answer; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `N = 10; ` ` `  `    ``cout << countInterestingPrimes(N); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java program to find the number ` `// of interesting primes up to N ` `class` `GFG{ ` `  `  `// Function to check if a number ` `// is prime or not ` `static` `boolean` `isPrime(``int` `n) ` `{ ` `  `  `    ``int` `flag = ``1``; ` `  `  `    ``// If n is divisible by any ` `    ``// number between 2 and Math.sqrt(n), ` `    ``// it is not prime ` `    ``for` `(``int` `i = ``2``; i * i <= n; i++) { ` `        ``if` `(n % i == ``0``) { ` `            ``flag = ``0``; ` `            ``break``; ` `        ``} ` `    ``} ` `  `  `    ``return` `(flag == ``1` `? ``true` `: ``false``); ` `} ` `  `  `// Function to check if a number ` `// is perfet square or not ` `static` `boolean` `isPerfectSquare(``int` `x) ` `{ ` `    ``// Find floating point value of ` `    ``// square root of x. ` `    ``double` `sr = Math.sqrt(x); ` `  `  `    ``// If square root is an integer ` `    ``return` `((sr - Math.floor(sr)) == ``0``); ` `} ` `  `  `// Function to find the number of interesting ` `// primes less than equal to N. ` `static` `int` `countInterestingPrimes(``int` `n) ` `{ ` `  `  `    ``int` `answer = ``0``; ` `    ``for` `(``int` `i = ``2``; i <= n; i++) { ` `  `  `        ``// Check whether the number ` `        ``// is prime or not ` `        ``if` `(isPrime(i)) { ` `  `  `            ``// Iterate for values of b ` `            ``for` `(``int` `j = ``1``; ` `                 ``j * j * j * j <= i; ` `                 ``j++) { ` `  `  `                ``// Check condition for a ` `                ``if` `( ` `                    ``isPerfectSquare( ` `                        ``i - j * j * j * j)) { ` `                    ``answer++; ` `                    ``break``; ` `                ``} ` `            ``} ` `        ``} ` `    ``} ` `  `  `    ``// Return the required answer ` `    ``return` `answer; ` `} ` `  `  `// Driver code ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``int` `N = ``10``; ` `  `  `    ``System.out.print(countInterestingPrimes(N)); ` `} ` `} ` ` `  `// This code is contributed by Princi Singh `

## Python3

 `# Python3 program to find the number ` `# of interesting primes up to N ` `import` `math ` ` `  `# Function to check if a number ` `# is prime or not ` `def` `isPrime(n): ` ` `  `    ``flag ``=` `1` ` `  `    ``# If n is divisible by any ` `    ``# number between 2 and sqrt(n), ` `    ``# it is not prime ` `    ``i ``=` `2` `    ``while``(i ``*` `i <``=` `n): ` `        ``if` `(n ``%` `i ``=``=` `0``): ` `            ``flag ``=` `0` `            ``break` `        ``i ``+``=` `1` `     `  `    ``return` `(``True` `if` `flag ``=``=` `1` `else` `False``) ` ` `  `# Function to check if a number ` `# is perfet square or not ` `def` `isPerfectSquare(x): ` ` `  `    ``# Find floating povalue of ` `    ``# square root of x. ` `    ``sr ``=` `math.sqrt(x) ` ` `  `    ``# If square root is an integer ` `    ``return` `((sr ``-` `math.floor(sr)) ``=``=` `0``) ` ` `  `# Function to find the number of interesting ` `# primes less than equal to N. ` `def` `countInterestingPrimes(n): ` ` `  `    ``answer ``=` `0` `    ``for` `i ``in` `range``(``2``, n): ` ` `  `        ``# Check whether the number ` `        ``# is prime or not ` `        ``if` `(isPrime(i)): ` ` `  `            ``# Iterate for values of b ` `            ``j ``=` `1` `            ``while``(j ``*` `j ``*` `j ``*` `j <``=` `i): ` ` `  `                ``# Check condition for a ` `                ``if` `(isPerfectSquare(i ``-` `j ``*` `j ``*`  `                                        ``j ``*` `j)): ` `                    ``answer ``+``=` `1` `                    ``break` `                ``j ``+``=` `1` ` `  `    ``# Return the required answer ` `    ``return` `answer ` ` `  `# Driver code ` `if` `__name__``=``=``'__main__'``:  ` ` `  `    ``N ``=` `10` ` `  `    ``print``(countInterestingPrimes(N)) ` ` `  `# This code is contributed by AbhiThakur `

## C#

 `// C# program to find the number ` `// of interesting primes up to N ` `using` `System; ` `using` `System.Collections.Generic; ` ` `  `class` `GFG{ ` `   `  `// Function to check if a number ` `// is prime or not ` `static` `bool` `isPrime(``int` `n) ` `{ ` `   `  `    ``int` `flag = 1; ` `   `  `    ``// If n is divisible by any ` `    ``// number between 2 and Math.Sqrt(n), ` `    ``// it is not prime ` `    ``for` `(``int` `i = 2; i * i <= n; i++) { ` `        ``if` `(n % i == 0) { ` `            ``flag = 0; ` `            ``break``; ` `        ``} ` `    ``} ` `   `  `    ``return` `(flag == 1 ? ``true` `: ``false``); ` `} ` `   `  `// Function to check if a number ` `// is perfet square or not ` `static` `bool` `isPerfectSquare(``int` `x) ` `{ ` `    ``// Find floating point value of ` `    ``// square root of x. ` `    ``double` `sr = Math.Sqrt(x); ` `   `  `    ``// If square root is an integer ` `    ``return` `((sr - Math.Floor(sr)) == 0); ` `} ` `   `  `// Function to find the number of interesting ` `// primes less than equal to N. ` `static` `int` `countInterestingPrimes(``int` `n) ` `{ ` `   `  `    ``int` `answer = 0; ` `    ``for` `(``int` `i = 2; i <= n; i++) { ` `   `  `        ``// Check whether the number ` `        ``// is prime or not ` `        ``if` `(isPrime(i)) { ` `   `  `            ``// Iterate for values of b ` `            ``for` `(``int` `j = 1; ` `                 ``j * j * j * j <= i; ` `                 ``j++) { ` `   `  `                ``// Check condition for a ` `                ``if` `( ` `                    ``isPerfectSquare( ` `                        ``i - j * j * j * j)) { ` `                    ``answer++; ` `                    ``break``; ` `                ``} ` `            ``} ` `        ``} ` `    ``} ` `   `  `    ``// Return the required answer ` `    ``return` `answer; ` `} ` `   `  `// Driver code ` `public` `static` `void` `Main(String[] args) ` `{ ` `    ``int` `N = 10; ` `   `  `    ``Console.Write(countInterestingPrimes(N)); ` `} ` `} ` ` `  `// This code is contributed by Rajput-Ji `

Output:

```2
```

Time Complexity: O(N)

Efficient Approach:

1. If we store all perfect squares and perfect quadruples up to N, then we can iterate through all the pairs and check whether the result is prime or not.
2. To further optimise we can store all primes till N using sieve of eratosthenes and do the primality check in O(1).

Below is the implementation of the above approach:

## C++

 `// C++ program to find the number ` `// of interesting primes up to N. ` ` `  `#include ` `using` `namespace` `std; ` ` `  `// Function to find all prime numbers ` `void` `SieveOfEratosthenes( ` `    ``int` `n, ` `    ``unordered_set<``int``>& allPrimes) ` `{ ` `    ``// Create a boolean array "prime[0..n]" ` `    ``// and initialize all entries as true. ` `    ``// A value in prime[i] will finally ` `    ``// be false if i is Not a prime. ` `    ``bool` `prime[n + 1]; ` `    ``memset``(prime, ``true``, ``sizeof``(prime)); ` ` `  `    ``for` `(``int` `p = 2; p * p <= n; p++) { ` ` `  `        ``// If prime[p] is not changed, ` `        ``// then it is a prime ` `        ``if` `(prime[p] == ``true``) { ` ` `  `            ``// Update all multiples of p ` `            ``// greater than or equal to ` `            ``// the square of it ` `            ``for` `(``int` `i = p * p; i <= n; i += p) ` `                ``prime[i] = ``false``; ` `        ``} ` `    ``} ` ` `  `    ``// Store all prime numbers ` `    ``for` `(``int` `p = 2; p <= n; p++) ` `        ``if` `(prime[p]) ` `            ``allPrimes.insert(p); ` `} ` ` `  `// Function to check if a number ` `// is perfet square or not ` `int` `countInterestingPrimes(``int` `n) ` `{ ` `    ``// To store all primes ` `    ``unordered_set<``int``> allPrimes; ` ` `  `    ``SieveOfEratosthenes(n, allPrimes); ` ` `  `    ``// To store all interseting primes ` `    ``unordered_set<``int``> intersetingPrimes; ` ` `  `    ``vector<``int``> squares, quadruples; ` ` `  `    ``// Store all perfect squares ` `    ``for` `(``int` `i = 1; i * i <= n; i++) { ` `        ``squares.push_back(i * i); ` `    ``} ` ` `  `    ``// Store all perfect quadruples ` `    ``for` `(``int` `i = 1; i * i * i * i <= n; i++) { ` `        ``quadruples.push_back(i * i * i * i); ` `    ``} ` ` `  `    ``// Store all interseting primes ` `    ``for` `(``auto` `a : squares) { ` `        ``for` `(``auto` `b : quadruples) { ` `            ``if` `(allPrimes.count(a + b)) ` `                ``intersetingPrimes.insert(a + b); ` `        ``} ` `    ``} ` ` `  `    ``// Return count of interseting primes ` `    ``return` `intersetingPrimes.size(); ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `N = 10; ` ` `  `    ``cout << countInterestingPrimes(N); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java program to find the number ` `// of interesting primes up to N. ` `import` `java.util.*; ` ` `  `class` `GFG{ ` `  `  `// Function to find all prime numbers ` `static` `void` `SieveOfEratosthenes( ` `    ``int` `n, HashSet allPrimes) ` `{ ` `    ``// Create a boolean array "prime[0..n]" ` `    ``// and initialize all entries as true. ` `    ``// A value in prime[i] will finally ` `    ``// be false if i is Not a prime. ` `    ``boolean` `[]prime = ``new` `boolean``[n + ``1``]; ` `    ``Arrays.fill(prime, ``true``); ` `  `  `    ``for` `(``int` `p = ``2``; p * p <= n; p++) { ` `  `  `        ``// If prime[p] is not changed, ` `        ``// then it is a prime ` `        ``if` `(prime[p] == ``true``) { ` `  `  `            ``// Update all multiples of p ` `            ``// greater than or equal to ` `            ``// the square of it ` `            ``for` `(``int` `i = p * p; i <= n; i += p) ` `                ``prime[i] = ``false``; ` `        ``} ` `    ``} ` `  `  `    ``// Store all prime numbers ` `    ``for` `(``int` `p = ``2``; p <= n; p++) ` `        ``if` `(prime[p]) ` `            ``allPrimes.add(p); ` `} ` `  `  `// Function to check if a number ` `// is perfet square or not ` `static` `int` `countInterestingPrimes(``int` `n) ` `{ ` `    ``// To store all primes ` `    ``HashSet allPrimes = ``new` `HashSet(); ` `  `  `    ``SieveOfEratosthenes(n, allPrimes); ` `  `  `    ``// To store all interseting primes ` `    ``HashSet intersetingPrimes = ``new` `HashSet(); ` `  `  `    ``Vector squares = ``new` `Vector() ` `            ``, quadruples = ``new` `Vector(); ` `  `  `    ``// Store all perfect squares ` `    ``for` `(``int` `i = ``1``; i * i <= n; i++) { ` `        ``squares.add(i * i); ` `    ``} ` `  `  `    ``// Store all perfect quadruples ` `    ``for` `(``int` `i = ``1``; i * i * i * i <= n; i++) { ` `        ``quadruples.add(i * i * i * i); ` `    ``} ` `  `  `    ``// Store all interseting primes ` `    ``for` `(``int` `a : squares) { ` `        ``for` `(``int` `b : quadruples) { ` `            ``if` `(allPrimes.contains(a + b)) ` `                ``intersetingPrimes.add(a + b); ` `        ``} ` `    ``} ` `  `  `    ``// Return count of interseting primes ` `    ``return` `intersetingPrimes.size(); ` `} ` `  `  `// Driver code ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``int` `N = ``10``; ` `  `  `    ``System.out.print(countInterestingPrimes(N)); ` `} ` `} ` ` `  `// This code is contributed by 29AjayKumar `

## Python3

 `# Python3 program to find the number  ` `# of interesting primes up to N.  ` ` `  `# Function to find all prime numbers  ` `def` `SieveOfEratosthenes(n, allPrimes):  ` `     `  `    ``# Create a boolean array "prime[0..n]"  ` `    ``# and initialize all entries as true.  ` `    ``# A value in prime[i] will finally  ` `    ``# be false if i is Not a prime.  ` `    ``prime ``=` `[``True``] ``*` `(n ``+` `1``)  ` `     `  `    ``p ``=` `2` `    ``while` `p ``*` `p <``=` `n:  ` `         `  `        ``# If prime[p] is not changed,  ` `        ``# then it is a prime  ` `        ``if` `prime[p] ``=``=` `True``:  ` `             `  `            ``# Update all multiples of p  ` `            ``# greater than or equal to  ` `            ``# the square of it  ` `            ``for` `i ``in` `range``(p ``*` `p, n ``+` `1``, p):  ` `                ``prime[i] ``=` `False` `        ``p ``+``=` `1` `     `  `    ``# Store all prime numbers  ` `    ``for` `p ``in` `range``(``2``, n ``+` `1``):  ` `        ``if` `prime[p]:  ` `            ``allPrimes.add(p)  ` ` `  `# Function to check if a number  ` `# is perfet square or not  ` `def` `countInterestingPrimes(n):  ` `     `  `    ``# To store all primes  ` `    ``allPrimes ``=` `set``()  ` `     `  `    ``# To store all interseting primes  ` `    ``SieveOfEratosthenes(n, allPrimes)  ` `     `  `    ``# To store all interseting primes  ` `    ``interestingPrimes ``=` `set``()  ` `     `  `    ``squares, quadruples ``=` `[], []  ` `     `  `    ``# Store all perfect squares  ` `    ``i ``=` `1` `    ``while` `i ``*` `i <``=` `n:  ` `        ``squares.append(i ``*` `i)  ` `        ``i ``+``=` `1` `     `  `    ``# Store all perfect quadruples  ` `    ``i ``=` `1` `    ``while` `i ``*` `i ``*` `i ``*` `i <``=` `n:  ` `        ``quadruples.append(i ``*` `i ``*` `i ``*` `i)  ` `        ``i ``+``=` `1` `     `  `    ``# Store all interseting primes  ` `    ``for` `a ``in` `squares:  ` `        ``for` `b ``in` `quadruples:  ` `            ``if` `a ``+` `b ``in` `allPrimes:  ` `                ``interestingPrimes.add(a ``+` `b)  ` `                 `  `    ``# Return count of interseting primes  ` `    ``return` `len``(interestingPrimes)  ` ` `  `# Driver code  ` `N ``=` `10` `print``(countInterestingPrimes(N))  ` ` `  `# This code is contributed by Shivam Singh  `

## C#

 `// C# program to find the number ` `// of interesting primes up to N. ` `using` `System; ` `using` `System.Collections.Generic; ` ` `  `class` `GFG{ ` `   `  `// Function to find all prime numbers ` `static` `void` `SieveOfEratosthenes( ` `    ``int` `n, HashSet<``int``> allPrimes) ` `{ ` `    ``// Create a bool array "prime[0..n]" ` `    ``// and initialize all entries as true. ` `    ``// A value in prime[i] will finally ` `    ``// be false if i is Not a prime. ` `    ``bool` `[]prime = ``new` `bool``[n + 1]; ` `    ``for``(``int` `i = 0; i < n + 1; i++) ` `        ``prime[i] =  ``true``; ` `   `  `    ``for` `(``int` `p = 2; p * p <= n; p++) { ` `   `  `        ``// If prime[p] is not changed, ` `        ``// then it is a prime ` `        ``if` `(prime[p] == ``true``) { ` `   `  `            ``// Update all multiples of p ` `            ``// greater than or equal to ` `            ``// the square of it ` `            ``for` `(``int` `i = p * p; i <= n; i += p) ` `                ``prime[i] = ``false``; ` `        ``} ` `    ``} ` `   `  `    ``// Store all prime numbers ` `    ``for` `(``int` `p = 2; p <= n; p++) ` `        ``if` `(prime[p]) ` `            ``allPrimes.Add(p); ` `} ` `   `  `// Function to check if a number ` `// is perfet square or not ` `static` `int` `countInterestingPrimes(``int` `n) ` `{ ` `    ``// To store all primes ` `    ``HashSet<``int``> allPrimes = ``new` `HashSet<``int``>(); ` `   `  `    ``SieveOfEratosthenes(n, allPrimes); ` `   `  `    ``// To store all interseting primes ` `    ``HashSet<``int``> intersetingPrimes = ``new` `HashSet<``int``>(); ` `   `  `    ``List<``int``> squares = ``new` `List<``int``>() ` `            ``, quadruples = ``new` `List<``int``>(); ` `   `  `    ``// Store all perfect squares ` `    ``for` `(``int` `i = 1; i * i <= n; i++) { ` `        ``squares.Add(i * i); ` `    ``} ` `   `  `    ``// Store all perfect quadruples ` `    ``for` `(``int` `i = 1; i * i * i * i <= n; i++) { ` `        ``quadruples.Add(i * i * i * i); ` `    ``} ` `   `  `    ``// Store all interseting primes ` `    ``foreach` `(``int` `a ``in` `squares) { ` `        ``foreach` `(``int` `b ``in` `quadruples) { ` `            ``if` `(allPrimes.Contains(a + b)) ` `                ``intersetingPrimes.Add(a + b); ` `        ``} ` `    ``} ` `   `  `    ``// Return count of interseting primes ` `    ``return` `intersetingPrimes.Count; ` `} ` `   `  `// Driver code ` `public` `static` `void` `Main(String[] args) ` `{ ` `    ``int` `N = 10; ` `   `  `    ``Console.Write(countInterestingPrimes(N)); ` `} ` `} ` `  `  `// This code is contributed by Rajput-Ji `

Output:

```2
```

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.