Skip to content
Related Articles

Related Articles

Improve Article
Count of elements which are second smallest among three consecutive elements
  • Last Updated : 08 Apr, 2021

Given a permutation P of first N natural numbers. The task is to find the number of elements Pi such that Pi is second smallest among Pi – 1, Pi and Pi + 1.
Examples: 
 

Input: P[] = {2, 5, 1, 3, 4} 
Output:
3 is the only such element.
Input: P[] = {1, 2, 3, 4} 
Output:
 

 

Approach: Traverse the permutation from 1 to N – 2 ( zero-based indexing) and check the below two conditions. If anyone of these conditions satisfy then increment the required answer. 
 

  • If P[i – 1] < P[i] < P[i + 1].
  • If P[i – 1] > P[i] > P[i + 1].

Below is the implementation of the above approach: 
 



C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count of elements
// P[i] such that P[i] is the second smallest
// among P[i – 1], P[i] and P[i + 1]
int countElements(int p[], int n)
{
    // To store the required answer
    int ans = 0;
 
    // Traverse from the second element
    // to the second last element
    for (int i = 1; i < n - 1; i++) {
        if (p[i - 1] > p[i] and p[i] > p[i + 1])
            ans++;
        else if (p[i - 1] < p[i] and p[i] < p[i + 1])
            ans++;
    }
 
    // Return the required answer
    return ans;
}
 
// Driver code
int main()
{
    int p[] = { 2, 5, 1, 3, 4 };
    int n = sizeof(p) / sizeof(p[0]);
 
    cout << countElements(p, n);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
 
// Function to return the count of elements
// P[i] such that P[i] is the second smallest
// among P[i-1], P[i] and P[i + 1]
static int countElements(int p[], int n)
{
    // To store the required answer
    int ans = 0;
 
    // Traverse from the second element
    // to the second last element
    for (int i = 1; i < n - 1; i++)
    {
        if (p[i - 1] > p[i] && p[i] > p[i + 1])
            ans++;
        else if (p[i - 1] < p[i] && p[i] < p[i + 1])
            ans++;
    }
 
    // Return the required answer
    return ans;
}
 
// Driver code
public static void main(String []args)
{
    int p[] = { 2, 5, 1, 3, 4 };
    int n = p.length;
 
    System.out.println(countElements(p, n));
}
}
 
// This code is contributed by PrinciRaj1992

Python3




# Python3 implementation of the approach
 
# Function to return the count of elements
# P[i] such that P[i] is the second smallest
# among P[i – 1], P[i] and P[i + 1]
def countElements(p, n) :
 
    # To store the required answer
    ans = 0;
 
    # Traverse from the second element
    # to the second last element
    for i in range(1, n - 1) :
         
        if (p[i - 1] > p[i] and p[i] > p[i + 1]) :
            ans += 1;
        elif (p[i - 1] < p[i] and p[i] < p[i + 1]) :
            ans += 1;
     
    # Return the required answer
    return ans;
 
# Driver code
if __name__ == "__main__" :
 
    p = [ 2, 5, 1, 3, 4 ];
    n = len(p);
 
    print(countElements(p, n));
 
# This code is contributed by AnkitRai01

C#




// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to return the count of elements
// P[i] such that P[i] is the second smallest
// among P[i-1], P[i] and P[i + 1]
static int countElements(int []p, int n)
{
    // To store the required answer
    int ans = 0;
 
    // Traverse from the second element
    // to the second last element
    for (int i = 1; i < n - 1; i++)
    {
        if (p[i - 1] > p[i] && p[i] > p[i + 1])
            ans++;
        else if (p[i - 1] < p[i] && p[i] < p[i + 1])
            ans++;
    }
 
    // Return the required answer
    return ans;
}
 
// Driver code
public static void Main(String []args)
{
    int []p = { 2, 5, 1, 3, 4 };
    int n = p.Length;
 
    Console.WriteLine(countElements(p, n));
}
}
 
// This code is contributed by Rajput-Ji

Javascript




<script>
 
// JavaScript implementation of the approach
 
// Function to return the count of elements
// P[i] such that P[i] is the second smallest
// among P[i-1], P[i] and P[i + 1]
    function countElements(p , n)
    {
        // To store the required answer
        var ans = 0;
 
        // Traverse from the second element
        // to the second last element
        for (i = 1; i < n - 1; i++) {
            if (p[i - 1] > p[i] && p[i] > p[i + 1])
                ans++;
            else if (p[i - 1] < p[i] && p[i] < p[i + 1])
                ans++;
        }
 
        // Return the required answer
        return ans;
    }
 
    // Driver code
     
        var p = [ 2, 5, 1, 3, 4 ];
        var n = p.length;
 
        document.write(countElements(p, n));
 
// This code contributed by Rajput-Ji
 
</script>
Output: 
1

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes




My Personal Notes arrow_drop_up
Recommended Articles
Page :